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Abstract

We have reached the point where robots prominently enter our daily lives, be it as a versatile tool at

work or as an obedient household helper. This development is especially exciting for people with physical

limitations, since designated assistive robots harbour a large potential to enhance their users’ autonomy

and quality of life. Following this line of thought, the field of assistive robotics introduces mechanical

assistants to people who would otherwise struggle with activities of daily living. However, this necessitates

adequate and potentially personalised control methods. Focussing on wheelchair-mounted robotic arms,

this thesis discusses the methods currently applied in the field, evaluates directly applicable manual

alternatives, and proposes a novel shared control based on adaptive degrees of freedom. Following a

participatory design, each element is developed and evaluated in close collaboration with the target group,

thus allowing for appropriate integrations and realistic assessments.

For the contemporary manual analysis, users evaluated the default manufacturer-provided input device

in comparison to a gamepad, 3D mouse, and a command-based voice control. Overall, these studies

with the target group (N1 = 26, N2 = 15) show a large potential for improvement of the standard in

terms of usability and versatility. During this, especially the necessity of mode switches in the robot’s

default control was remarked negatively. Instead, the participants expressed an eagerness for personalised

adaptability, as well as an explicit willingness to train in the use of more complex but capable systems,

such as a 3D mouse.

Heeding this, this thesis introduces the novel shared control approach of Adaptive Degrees of Freedom:

A camera-based sensor system probabilistically analyses the current situation to generate the most likely

directions of robot motion. Subsequently, these directions are mapped onto the user’s input device,

effectively replacing the classically available cardinal Degrees of Freedom (DoFs) (e.g. up, left, roll, . . . ).

In the end, this enables users to control a robot along arbitrarily complex DoF with any input device,

explicitly including very low-DoF interfaces (e.g. chin joysticks), thereby making robots more accessible

for people with very limited mobility. For the user, this feels like the system anticipating their next move

without taking over control. Instead, it simply provides them with a selection of movement directions

designed specifically for the current situation.

This novel control is mathematically and conceptually introduced with its usability verified in preliminary

studies. Preparing for a contemporary data-based realisation, a mixed-reality development framework

was developed and used to record an extensive dataset of user controlled robots in assistive settings in

simulation and reality. Both the framework and dataset were published open-source and free-of-charge.

The dataset was planned to be used with a state-of-the-art deep-learning neural network to predict DoFs

end-to-end based on image data. While this was applicable in an initial 2D baseline scenario, the training

of machine-learned models in 3D was unsuccessful. This startling result runs seemingly contradictory to

the research community’s current achievements using similar methods, which is why this thesis includes

an extensive analysis of why this is the case.

As an alternative, the author presents a probabilistic behaviour-based integration that is able to generate

the adaptive DoFs. This implementation was evaluated in multiple studies, focussing on its general

applicability, human-computer-interaction, and usability. Finally, a study conduced solely with the target

group (people with limited upper body mobility, N3 = 24) evaluated the completely integrated system,

showcasing high user acceptance with a steep learning curve and high success rates of example trials.

Keywords: Assistive Robotics, Shared Control, Human-Robot-Interface, Participatory Research
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Prelude

Roughly one year after I started working with assistive robotics, my father got seriously sick. Our lives

changed drastically, and I somehow gained hands-on experience of a topic which, up to this point, I had

barely touched from more than a scholarly perspective. There is one story I’d like to share for this thesis:

My father was an intelligent and extremely well organised person, who was often set in his ways: At

home and at work, every object, be it a key, printer cartridge, or simple shoehorn, had defined positions

to which they had to be returned whenever not in use. Similarly, there were activities which had to be

carried out in certain ways. Some of these he instructed everyone to perform; For example, there was a

door which always needed to be closed again immediately in order to avoid heat or insects to come in.

Others were more internally automated, resulting in tiny habits, the kind of which we all have. For him,

one of these was eating his favourite yoghurt after every day of work.

Then, on the first day my mother and I were allowed to visit him after the surgery, we brought along

some of this yoghurt. The operation left him paralysed on his left side, partially affected his mental

capacities, and, temporarily, impeded his ability to speak. He was visibly happy to see both us and the

yoghurt. At some point my mother removed the lid and I held the cup in place for him to eat one-handedly.

However, as my mother walked to throw away the lid, I noticed him getting more and more distressed

and following her with his gaze.

Something was not right, but, paralysed as he was, he could neither correct it himself nor communicate

with us sufficiently. While already being overburdened from the beginning, we now grew anxious of how

to possibly help him. Surprised by his reaction, we remembered him always scratching off the tiny bit of

yoghurt sticking to the lid. This was now missing to his routine, stressing him and having an astonishingly

large impact on his mental state in this situation. We saved the lid, just before throwing it away, and

could marvel at his content of being able to happily complete his routine.

I believe we all have these tiny habits. Some of which we might not even be aware of. But somehow, it

is vital to us that certain steps and activities are carried out according to our individual beliefs.

This grows increasingly difficult when receiving care, as it often comes with a loss of independence.

Suddenly, every bit of self-determined control is important, as it retains a bit of one’s self. We cannot

assume approaches of one-size-fits-all or generalised automation to function in this highly individual and

personal field. At least, it wouldn’t have worked for my father, for whom the yoghurt with lid to scratch

bits off remained a highlight up to his last day.
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1. Introduction

Even though robots were historically developed, as implied by the linguistic background of workers, to

perform menial and repetitive labour in industrial settings, their applications have long since extended

to regular households and daily living: We use robotic machines to clean our floors, prepare food in the

kitchen, and even manipulate patients in hospital beds. Assistive robotics goes one step further by aiming

to assist people during activities of daily living, generally focussing on people with motor impairments.

However, the general broadening of applications already necessitates adjustments of control strategies,

as the usage of robots is no longer limited to trained engineers. For assistive robots in particular, these

strategies must also consider variations of physical input devices and software-based support in order to

cope with a user’s individual physical limitations.

In Germany alone, 7.8 million people live with severe disabilities (9.4 % of the overall population, as of

2021), with approximately 600 thousand having limited functionality, or loss, of at least one arm [53]. For

many of these people, assistive robots hold a large potential to increase their independence and overall

autonomy, especially if they are otherwise consistently receiving individual care [41]. Figure 1 shows such

a device, often integrated as a Wheelchair-mounted Robotic Arm (WMRA), which can usually be directly

operated using the wheelchair’s default joystick designed for driving [34].

Figure 1: The Kinova Jaco Assistive Robot Arm as WMRA. Courtesy of Kevin Rupp | Frankfurt UAS

However, a robot arm is a conceptually vastly more complex device than a wheelchair. A standard

wheelchair can only drive on the horizontal plane by accelerating forwards or backwards, and rotating

around its axis; i.e. it has two Degrees of Freedom (DoFs): drive and rotate. The deployed robotic arms

on the other hand can move and rotate arbitrarily in three dimensions, as well as closing their fingers to

grasp objects. Aggregating the individual fingers for their intent as a single grasping-DoF, this amounts

to seven DoFs for the robot arm. This discrepancy results in an ill-fit when controlling the complex robot

with the simple joystick designed for wheelchair use. Usually, this is circumvented by introducing control

modes.

With these, the user can, at a single point in time, only move the robot along two DoFs and has to

switch modes to reach other options (e.g. they can control translation in one mode, but have to switch
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to reach rotations). This can be a very slow and tedious process and can cause distress in operators:

pouring a glass of water, for example, takes ≈ 500 seconds with ≈ 50 mode switches, thereby spending

more than one-sixth of the total execution time with changing modes [20]. Figure 2 shows an overview

of the button mapping for the manufacture’s 3-DoFs joystick using three modes. Classically, assistive

wheelchair joysticks only have two DoFs.

Rotation Mode Finger ModeTranslation Mode

Tilt to move 
forwards / back

Tilt to rotate up 
/ down (pitch)

Twist to roll

Close 2 fingers

Toggle Translation 
/ Rotation Mode

Toggle Translation 
/ Rotation Mode

Enter Finger 
Mode

Tilt to rotate 
left / right (yaw) Close all 

fingers
Open all 
fingers

Tilt to move 
sideways

Twist to move 
down / up

Jaco Control

Figure 2: The Kinova Jaco’s Default Control Scheme Visualised

Such issues generally do not arise in classic industrial settings where robots are fully automated. However,

automation is not a practical solution for assistive robots, as computer-controlled execution of Activities

of Daily Living (ADLs) in unknown environments is not only very complex, but would also deprive users

of an opportunity for individuality and self-determined autonomy (cf. [28]). As these are basically the

essential reasons for people to utilise assistive robots, other solutions need to be examined [36].

The community has developed various different approaches to this problem: On one side, custom input

devices were designed that could be adapted to their user’s needs and capabilities. For example, one concept

uses a Brain-Computer-Interface (BCI) to control a robot arm along predetermined trajectories [52],

whereas others attached various body-sensors on a single user to create high-dimensional input data

from their remaining mobility and converting this to robot control inputs [30]. On the other side

are implementations of partial automation, including time- or space-related hand-overs of controls [11],

automated mode-switching [20], as well as simultaneous control shared between the user and a software [56].

In case of the former, the user manually controls the robot up until a software takes over for a certain

sub-task [11, 58], whereas the latter involves blending the manual user input with that of a software, e.g.

by having the software solely handle the robot’s orientation [58].

1.1. Contributions

This thesis experimentally analyses contemporary options for assistive robot control and subsequently

presents a novel method of shared control. The initial analysis rests on two extensive studies conducted with
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care-receiving and care-associated participants. These evaluate four different general purpose input devices

for manual control, thereby establishing their requirements and preferences towards such devices. Further,

this thesis presents a partially automated system of shared control designed to allow self-determined

drinking from a cup for people with tetraplegia. Tetraplegia is the paralysis of all four limbs below the

neck. This all leads to the main body of this thesis, which is a novel paradigm for shared assistive control:

Previously, operators would use a low-DoFs input device (e.g. Figure 2) to send a control signal c to

the robot. Depending on the current mode D, which is selected by the operator from a pre-determined

set of modes D̂ (see translation, rotation, gripper in Figure 2), the control signal was used to move the

robot along cardinal DoFs (e.g. up, forward, yaw, gripper, . . . ). This can be tedious and time-consuming,

as even simple tasks require repeated mode switching.

Sensors AI

Mode
switching

Input Device × Robot

User Interface

c u
D

z D̂ (z)

Figure 3: Control Concept for Adaptive DoFs. Adapted from [IV]

The novel concept is shown in Figure 3 and expands (in red) on the classic interaction (black), by

making the modes situation-dependant: An Artificial Intelligence (AI)-supported software adaptively

analyses the current situation z and generates DoFs D̂(z) of robotic motion that are most likely to be

desired by the user. These replace the previously used cardinal DoFs-based modes, such that the user

can select to directly map their control input to these most-likely DoFs of robotic motion. The result

sees the user controlling the robot along arbitrarily complex high-dimensional motions, while using only a

simple input device, for example with only one DoF. To them, this feels like the system anticipating their

next move without taking over control. Instead, it simply provides the user with a selection of movement

directions designed specifically for the current situation.

A mixed-reality framework for the development and evaluation of such concepts of shared control was

developed and published open-source. This framework was used in user-centric studies to evaluate the

concept’s general applicability and inherent required communication of controllable DoFs for the operator.

Further, the framework was used to record an extensive dataset of human-controlled robot motion in

assistive settings as preparation for data-based approaches, which was also published free-of-charge.

The dataset was planned to be used with a state-of-the-art deep-learning neural network to predict

DoFs end-to-end based on image data. While this was successful in an initial 2D baseline scenario, the

results accomplished with machine-learned models in 3D were unsatisfying. This startling result runs

seemingly contradictory to the research community’s current successes using similar methods. This thesis

therefore includes an extensive analysis of why this is the case.

Instead, a probabilistic combination of elemental behaviours was developed and tested in a controlled

environment. This successful implementation was finally presented to, and evaluated by, the target

audience at a large international trade fair.

In short, the contributions of this thesis are:

• an in-depth experimental evaluation of contemporary control options available for assistive robots [I,

VII] with

– resulting requirements to assistive controls as set by the target group [XI], and
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• a novel approach to shared control using adaptive DoFs, including

– the accessible theoretical and conceptual system framework [XII, IV, VIII, X],

– a novel free-to-use mixed-reality environment for evaluations of shared control [IX] (Best Paper

award winner at EICS 20241),

– an extensive curated dataset of human-controlled assistive robot motion in realistic and relevant

scenarios [III], and

• a CNN-based training of an end-to-end approach [IV], with

– an in-depth analysis of why this approach failed in 3D, as well as

• an alternative functional and study-proven implementation based on a probabilistic combination of

behaviours [XIII, V, VI] (Best Technical Paper award for [V] at PETRA 20242).

Over the course of this thesis, a total of 8 studies were conducted. Of these, 3 focussed extensively on

the target group of individuals with limited upper limb mobility, whereas the others gathered mostly

preliminary technical results. An overview of all studies, including a short description, number of

participants, and participant criteria can be found in Table 1.

Table 1: List of Studies

Name Description
Number of

Participant Characteristics Reference
Participants

Study 1 Initial Contemporary Study at
REHAB (Preliminary)

N1 = 26 Individuals with limited upper
limb mobility, care professionals,
secondary users

[XI]

Study 2 Contemporary Lab Study N2 = 15 Individuals with limited upper
limb mobility

[XI]

Study 3 Final Behaviour Evaluation at
REHACARE

N3 = 24 Individuals with limited upper
limb mobility

[VI]

Study 4 Robotic Drinking Assistant:
Drinking from the Cup Study

N4 = 16 Able-bodied users and one tetra-
plegic user

[VII]

Study 5 First Usability Study N5 = 39 Able-bodied users [VIII]
Study 6 Second Usability Study N6 = 24 Able-bodied users [X]
Study 7 Adaptive DoFs in 2D N7 = 23 Able-bodied users [IV]
Study 8 Preliminary Behaviour Study N8 = 24 Able-bodied users [V]

In the following, Section 2 discusses alternative approaches to the control of assistive robots as presented

by the scientific community, while Section 3 presents contributed studies of contemporary control options,

including a proposed partial automated drinking realisation, and the study-based analyses of manual

control options.

The novel approach for shared control is introduced with conceptual and systematic derivations in

Section 4. Further, implementations regarding the generation of adaptive DoFs are presented in Section 5,

which include the end-to-end developed machine-learning variant in Section 5.1 and the alternative

behaviour-based realisation in Section 5.2. Finally, Section 6 concludes by discussing general implications

of the proposed control, summarises results and outlines subsequent necessary steps to further improve

the presented control and make it available to the public.

1The 16th ACM SIGCHI Symposium on Engineering Interactive Computing Systems. https://eics.acm.org/2024/, last
visited 10th December 2024

2The PErvasive Technologies Related to Assistive Environments Conference. https://www.petrae.org/, last visited
10th December 2024
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2. Related Work

Due to an ageing population and a lack of healthcare personnel, the public interest in robotics for care is

skyrocketing, thereby leading to a wide range of research in the field. While important work is done to

assist caregivers with their tasks (e.g. [3, 26, 37]), this thesis focusses on (re-) enabling people with limited

upper limb mobility (often care-receiving individuals) to independently physically interact with their

environment for Activities of Daily Living. These ADLs generally refer to the ‘basic tasks of everyday life,

such as eating, bathing, toileting, and transferring’ [14] (cf. [9, 46]). With the assistive robot of this thesis,

the applicable ADLs are focussed more on tasks like retrieving objects, drinking with a cup, and opening

doors. Further, the target group of this thesis persists mostly of people with limited upper limb mobility,

including, for example, people living with tetraplegia, spinal muscular atrophy, and Amyotrophic Lateral

Sclerosis (ALS).

Instead of custom devices that serve a singular purpose (e.g. an eating utensil for users with spastics [13,

55]), systems like assistive WMRAs follow a more holistic approach by employing high-dimensional

complex machines that aim to be general purpose. The market has a couple of such devices, some of

which are even supported by health insurances, including the Kinova Jaco [34] (Figure 1) and Assistive

Innovations’ iARM [10, 59], with others in development, such as a 4-DoF robot for users with cerebral

palsy [48]. While these machines are often mathematically and mechanically able to perform a variety of

tasks, their actual applicability and accessibility depends highly on the control interface. This itself often

needs to be adapted to fit with a user’s individual requirements [22], which includes custom adjustments

of physical input devices as well as introducing supportive software.

As mentioned in Section 1, the default interfaces for classic cardinal control are very manual, often

inducing frustration and exhaustion among users [11, 19, 20, 27, 40]. For this reason, the community has

developed various Human-Machine Interfaces (HMIs) that span the spectrum from manual control to

complete automation and involve multiple different physical input devices. These devices include eye-

trackers [51], tongue/chin-joysticks [17], head-controls [27, 36, 51], BCIs [18, 22, 23, 52], laser pointers [63],

and touch screens [54]. As most of these devices have far less input-DoFs than the robot has movement-

DoFs, numerous proposed systems still use the often frustrating manual mode switch sequences [32].

Those which avoid mode switches on the other side are designed with pre-defined tasks where the user

mostly has an administrative purpose, such as supplying continue-commands [52] or selecting objects to

be further handled autonomously by the robot [63].

Shared control lies in the middle of the spectrum between manual control and automation. It does so

by keeping the human in control whilst having an automation software assist during difficult operations.

Automated mode switching [20, 29], for example, allows quicker executions and a less tedious interaction

by sticking to the established interaction design of cardinal modes and having a software simply perform

the mode switch when necessary. Other systems arbitrate the user’s control input with a computer

generated control, thereby allowing the computer to assist by avoiding obstacles or letting the user control

only the translational DoFs of a robot arm, whilst automatically handling rotation [11, 58]. On the far

side of the spectrum, users simply indicate the target and let the robotic system automatically handle the

grasping and interaction [33, 54].

The latter fusion of simultaneous movement commands is referred to as control blending and is

also applied by Gopinath et al.: Following an automated mode switching designed to assist the AI to

probabilistically isolate the user’s goal, the actual motion commands of human and AI are blended once a

certainty threshold is surpassed. This aims to assist the user with small adjustments while they otherwise

remain limited to the classic cardinal DoFs [16]. Similarly, prior to execution Jain et al. divide their

objective into intermediate steps and sub-sequences. These sequences of robotic operations solve parts of

the task, are autonomously calculated during runtime, and subsequently suggested to the user. Instead
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of steering with classic cardinal robot control modes, this allows operators to select the pre-computed

automation trajectories and simply control the robot’s velocity along such a sequence [30].

Another highly promising example of shared control is made by Losey et al. using a latent action space:

A neural network is trained on task demonstrations to embed the necessary complex and high-dimensional

motion in a very low-dimensional latent action space. In deployment, the system works directly in this

action space by mapping the signal generated from a low-dimensional input device to a latent action

dimension. This allows, for example, to have a single joystick axis directly control the complex task of

approaching an object. However, this requires demonstration and knowledge of a predetermined task and

is therefore highly specific [39].

To be successful, any one of these systems involving human-robot cooperation requires clear commu-

nication between the partners, as only with that given can a user balance control input and system

maintenance. It is especially necessary to effectively communicate the intended assistance provided by

(semi-) autonomous system to the user [4]. In case of immediate shared control, this includes well-designed

information regarding the robot’s (motion) intent, as it is essential for the user to retain awareness and

understanding of the level of support provided by the system [44].

2.1. Automation and Personalisation

As the stated purpose of new control interfaces extends from generally higher independence [36] to a partial

reintegration of affected people to the workplace [17], a wide variety of applications and user diversity

needs to be contemplated during development. This includes user-centric analyses of requirements and

preferences for the given controls.

With respect to the spectrum of control (manual control versus autonomous operation), a study by Kim

et al. conducted with spinal cord injured subjects showed higher satisfaction for manual controls, even

though an autonomous variation required less effort [31]. This coincides with findings from Martinsen

et al., who established the users’ requirement to personalise their interaction such that personal standards

and social norms are met [41], which was later revisited by Canal et al. [8]. One can generally state that

no one-size-fits-all solution exists in assistive robotics [24]. As personalised automation is currently not

feasible on an individual level, this calls for more manual controls.

If, however, manual control by itself is not possible, the level of assistance should be configurable by the

user in order to allow for adjustments to their needs and abilities, as well as increase user satisfaction [28].

A simple way to implement this is to increase speed in safer regions which reduces frustration [32].

Overall, shared control can be the solution to this, as it increases subjectively felt independence [12], while

automated solutions (with the users in an administrative or oversighting role) can cause distrust [64],

stress and a feeling of losing control [47].
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3. Studies of Contemporary Control Interfaces

There is a natural gap between innovations presented by the research community and products available

for use by the interested public, as the progression of research-results to market-readiness often requires

resources not available to scientists or is not intended in the first place. So, in order to get realistic insights

on the current situation and future requirements by affected people that live with limited mobility of their

upper limb, one needs to analyse contemporary concepts of control. This does not necessarily limit the

options to products already on the market, but instead spans to prototypes close to realistic products

that could reasonably be employed in a large scale within a short time frame (e.g. 1–2 years).

Figure 4: Demonstrator of the AdaMeKoR project with the patient-operated smaller robot on the left
(main topic of this thesis) and the caregiver-assisting larger robot on the right. Courtesy of
DFKI

The project AdaMeKoR (An Adaptive Multi-Component Robot System for Nursing Care) [XI]3 aimed

to develop a multi-component robotic bed for care (see Figure 4), consisting of a large manipulator to aid

caregivers in repositioning patients and a small robot to be controlled by the patients themselves. This

thesis focusses on the latter. Motivated by the unsatisfying reception of the classic manufacturer-provided

control interface (see Section 1 and Figure 2), this project evaluated 3 additional contemporary concepts

of control for the smaller robot, as shown in Figure 5.

As the literature lists mode switches as one of the major concerns of the default joystick (Figure 5a),

the assessed interfaces have been selected specifically to mitigate and analyse this concern:

• Deployed by the gaming industry, gamepads (e.g. Figure 5b) are simple and publicly well known

input devices that have been designed to be relatively cheap and ergonomic for able-bodied users.

With numerous digital buttons and continuous axes (in our case 10 buttons and 8 axes4), they easily

allow to control all DoFs of the robot without the need for mode switches. However, they require

the use of two hands and a fair bit of dexterity.

• De facto originally developed for the control of robots [21], 3D Mice (Figure 5c) are currently best

3Ein adaptives Mehrkomponenten-Robotersystem für die Pflege (AdaMeKoR) was funded by the German Ministry for
Education and Research (BMBF), March 2020 until September 2023. http://adamekor.de/, last visited 10th December
2024

4Xbox One Wireless Controller by Microsoft Corporation. https://www.xbox.com/en-gb/accessories/controllers/

xbox-wireless-controller-adapter-windows, last visited 10th December 2024
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(a) (b) (c) (d)

Figure 5: Contemporary User Interfaces used in Study 1 and 2: Kinova Joystick (a), Gamepad (b), 3D
Mouse (c), Voice Control Interface (d). Adapted from [XI]

known for their use in Three-Dimensional (3D) design and construction5. Their main input element

can be pushed and rotated in arbitrary directions, thus offering 6 DoFs, accompanied by two buttons

on the sides. This device is designed to be used single-handedly but requires substantially more

dexterity than gamepads.

• Finally, a voice control interface was developed, as it was specifically requested by early participants.

To be in-line with the others, this interface was deployed on a readily used smart home device6 and

uses mostly manual pose-relative commands (up, down, rotate left, close gripper, . . . ).

In this setup, none of the interfaces relies on sensory information of the environment, making them all

completely manual as well as capable of general purpose application. Still, each device focusses on specific

design principles, such as simple but numerous buttons for the gamepad, or a single complex button for

the 3D mouse. See the appendix Section B for button mappings and control overviews of all input devices.

Exemplarily videos showcasing the Kinova Joystick and 3D mouse are available online7.

In contrast to many works in literature, the project relied heavily on participatory development and

integration of the final user group in order to achieve reliable results. For this purpose, two studies

were conducted: An initial study of preliminary experiments at the REHAB trade fair8 with N1 = 26

individuals with limited upper limb mobility, care professionals, and secondary users (Study 1), and an

extensive study with N2 = 15 mobility-impaired participants, carried out in their own homes or a living

lab [2] (Study 2).

During both studies, the users controlled the table-mounted assistive robot arm (left in Figure 4)

using a subset of the presented interfaces for defined scenarios. These were a simple pick-and-place task

for training and a realistic task of pouring water into a cup. After completion, the participants were

asked to freely compare the interfaces, thereby indirectly defining requirements towards such systems. As

quantitative data analysis for this highly diverse user group was unreasonable and the only important

metric for these interactions has to be user acceptance in any way, the within-subject evaluation focussed

mostly on qualitative data. Nevertheless, Study 2 includes a novel evaluation strategy for similar surveys,

by manually labelling each trial post-study into action sequences (cf. [III]), mindset-states (Thinking,

Controlling, Being Assisted), and rating a task’s success on a point-scale.

The two studies mainly differed by their scope in terms of time spent per user. In order to attract

more trade fair guests during Study 1, the setup was largely unrestricted, with both tasks being relatively

undefined and the task of pouring water only feigned with an empty bottle. This led to shorter turnaround

times and a higher number of engaged participants. However, this loose design also inhibited most

5SpaceMouse Wireless by 3Dconnexion GmbH. https://3dconnexion.com/uk/product/spacemouse-wireless/, last visited
10th December 2024

6Echo Dot by Amazon.com, Inc. https://www.amazon.de/dp/B084J4MZK6, last visited 10th December 2024
7Videos of the Kinova Joystick and 3D mouse available at https://www.informatik.uni-bremen.de/agebv/DoF-Adaptiv#
Comparison_of_Control_Concepts, last visited 10th December 2024

8REHAB trade fair. https://www.rehab-karlsruhe.com, last visited 10th December 2024
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quantitative data recording. For the succeeding Study 2, these issues were addressed by allowing for more

time with a single user, a highly structured study design, and realistic pouring of water in the second

task. Participants of Study 1 tested all 3 physical control interfaces (a, b, and c in Figure 5), whereas

the gamepad was replaced with the voice control in Study 2. Also, participants of Study 2 used only 2

randomly selected devices. This was due to the more time-intensive structured study design and direct

user-feedback from Study 1 requesting a voice interface.

The detailed results of both studies can be found in the designated publication [XI]. In summary, they

show the 3D mouse to be the clear user-favourite, with this type of step-wise voice control rated worst.

While the gamepad was rated second-best in Study 1, it required fine-controlled use of all fingers of two

hands — a prerequisite not existing for the other devices and mostly not met by participants of Study 2.

In comparison to the classic manufacturer-provided joystick, the main benefit of the other devices was

the lack of control modes. The direct mapping of controls (especially for gamepad and 3D mouse) was

reported to be extremely helpful, as users could learn motions by heart, akin to muscle memory; Where

pushing the joystick of the classic control in one direction can, depending on the mode, result in either

a translation, rotation, or change in the gripper, a similar input on one of the other devices always has

a consistent result due to the lack of modes. For the 3D mouse in particular, an active user of the arm

replied that it ‘is easier and requires less mental changes as there are no mode switches’ [XI]. With this,

they would use the arm daily, instead of asking for assistance by another person, as they currently often

do due to the currently existing cumbersome interface.
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Figure 6: Comparison of Accumulated Mindset-Times in Study 2. Adapted from [XI]
.

The results of Study 2’s labelled sequences also showed an interesting dynamic of time spend Controlling

versus Thinking (see Figure 6). In this study, all users started with the pick-and-place scenario, followed

by filling the cup. Generally, participants spend a larger percentage of time Controlling with the 3D

mouse, thus being more explorative and less obstructed by the interface. Interestingly, the time each user

spend during each task is distributed very differently, depending on the input device. During the second

task, not much change can be seen for the classic control, while the variance of times with the 3D mouse

drastically reduces, with its mean being significantly lower than the others. This can be an indicator for a

very quick training effect with this more complicated but capable device, as especially the time spend

exploratively controlling reduced for this interface.

Regarding the voice control requested by subjects of Study 1, participants were quickly frustrated by

the mentally taxing and rushed interaction with this general-purpose design of step-by-step commands.

Also, observations during the associated trials showed difficulties of the users verbally breaking down the

tasks into commandable steps. This was intriguing, as the same users had no issues with the physical
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interfaces. So for such a system to be applicable, some kind of autonomy-assistance is necessary.

Overall, the studies show a market for more complex user interfaces (e.g. the 3D mouse) that allow the

users to improve themselves and gain proficiency with more capable devices. Also, these studies support

the results of Holloway that users need to be able to select from various interfaces and no one-size-fits-all

exists [24]. Therefore, wherever possible, interface design should focus on user individually instead of

further sub-categorising people by symptoms [XI].

3.1. Evaluations in Activities of Daily Living

In order to properly further evaluate strategies of assistive control, they need to be tested in scenarios that

are both realistic and relevant to the target audience. As part of the projects MobILe (Physical Human-

Robot Interaction for a Self-Determined Life)9, AdaMeKoR, and DoF-Adaptiv (Adaptive DoF Embedding

as Cooperative User Interface for an Assistive Robot)10, a collaboration of researchers, care-receiving and

care-giving individuals, as well as affected people with limited limb mobility fleshed out relevant situation

and scenarios in multiple workshops and interviews [I, XII, II].

In short, the developed scenarios were Eating and Drinking (including Filling a Cup), Opening and

Closing Doors, Preparing Food, Shopping for Groceries, and generally Picking up Objects [XII, III]. As the

literature also listed eating and drinking as being predominant [9], the latter was isolated to be the main

focus of the MobILe project: Developed as an extendable robotic software (akin to a smartphone app),

this produced a partially autonomous robotic assistant for drinking [I, VII], the use of which can be seen

in Figure 711.

(a) (b)

Figure 7: Assistive Drinking using the Partially-Autonomous Robotic Drinking Assistant. Adapted from
[VII] © 2019 IEEE

Since drinking is a highly personalised and contact-intensive task, if not performed with a straw, this

robotic assistant assured to keep the user in constant control and attempted to run as a supporting

function that could be always-on. Targeted specifically for users with tetraplegia who can only move their

head, this device detected the pose of its user’s face during approach, and the force of lips during contact.

9Physische Mensch-Roboter-Interaktion für ein selbstbestimmtes Leben (MobILe) was funded by the German Ministry
for Education and Research (BMBF), July 2017 until June 2021. https://www.interaktive-technologien.de/service/
ergebnissteckbriefe/ergebnissteckbriefe-ara/ergebnissteckbrief-mobile, last visited 10th December 2024

10Adaptive Freiheitsgradeinbettung als kooperatives Userinterface für einen Assistenzroboter (DoF-Adaptiv) was fun-
ded by the German Ministry for Education and Research (BMBF), February 2021 until January 2024. https:

//www.interaktive-technologien.de/service/ergebnissteckbriefe/meki/dof-adaptiv, last visited 10th December
2024

11Video of the Robotic Drinking Assistant available as Supplemental Items at https://ieeexplore.ieee.org/abstract/
document/8779521/media#media, last visited 10th December 2024
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Both interactions were used to give the user maximum control during operation and automatic retrieval

and abort functionality, if requested by the user.

The robotic assistant was tested in two small studies thereby separately evaluating serving the drink (i.e.

engaging in user contact) and actually drinking from the cup. Only the second study regarding the latter

(Study 4 with N4 = 16) is part of this thesis. The combined results showed the robots high reliability in

safety-critical situations as well as an easy and intuitive concept of control for both sub-tasks [VII].

3.2. Robot Control: Manual Control versus Autonomous Operation

Over the course of this thesis, 3 major studies were conducted with different primary and secondary users

of assistive robots. Of these, Study 1 and 2 were previously introduced, whereas Study 3 will mainly

be presented in Section 5.2. Each of the studies involved individuals with limited upper limb mobility

evaluating different concepts of control with an assistive robot arm on given example tasks. Solely the

preliminary Study 1 extended the criteria to include care professionals (e.g. therapists) and secondary

users (e.g. caregiving family members).

While the focus of the studies varied and concentrated on the singular interfaces used, they all concluded

with open questionnaires regarding the general use of the technology and the participants’ preference

towards automation. This was done to serve as guidelines for future developments and to assess the often

claimed user-aversion towards automation (cf. [31, 58]). For this, the participants could freely elaborate

their opinion, before finally positioning their preferred level of automation on a scale from 0 (complete

manual control) to 10 (complete automation). The response distributions are shown as box plots in

Figure 8. Here, the responses of the different user groups in Study 1 are shown as stacked bars, with care

professionals in striped green and secondary users in dotted red.
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Figure 8: Automation preferences of users in different studies, including the preliminary Study 1 at
REHAB (N1 = 26, top), the AdaMeKoR final evaluation Study 2 at users’ homes (N2 = 15,
centre) and the DoF-Adaptiv final evaluation Study 3 at REHACARE (N3 = 24, bottom,
adapted from [VI] © 2024 IEEE)

Though differently distributed over the studies, the data shows a clear preference towards the manual

control, with only 2 secondary users opting for complete automation and various users selecting a complete

manual control, especially during Study 2. Interestingly, the data of Study 3 has a peak at the midpoint
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between manual control and complete automation, however with most other responses being evenly spread

out over the lower levels of automation [VI]. These differing distributions can most likely be ascribed to the

varying input devices and control methods seen by the study participants: Study 1 gave only brief glimpses

into 3 manual controls, thereby rather capturing users’ initial perspectives, whereas Study 2 provided the

subjects with extensive training time, which allowed them to gain proficiency and assertiveness with the

devices. Finally, the subjects of Study 3 were introduced to an assistive shared control (see Section 4),

which may have given them a better impression for the possible spectrum of automation. As requested,

the participants extensively elaborated on their preferences and associated reasons. The following direct

quotes were taken in German and freely translated.

Multiple affected primary users (8) stated their desire for independence, which explicitly includes the

ability to ‘decide how something is done’12. For some, this coincided with a reluctance of being served,

independent of whether this is done by a robot or human. One participant stated that ‘if the robot were

to do that automatically, [they] could just as well position a nurse there’; which would violate the purpose

of the robot being an extension of their paralysed arm13.

In addition to independence, multiple participants (5) referred to their own fitness, both mentally and

physically, being measured and held up-to-date by such applications. One said that ‘everything I delegate

does not strain me. What does not strain me, lets me expire’14. The general idea of this was independently

confirmed by the participating therapists and care professionals (7), who explicitly recommended manual

control as it supports mental coordination.

Others (7) were cautious of automated controls, deeming them ‘cool but prone to errors’15. This

included cautions regarding the arm behaving unexpectedly, the interface not understanding the user’s

intent, and the system generally missing necessary customisations, thereby once again missing its target of

increased independence. Here, the consensus was often an opt-in option for automation, possibly including

the ability to record reoccurring sequences or macros. This was generally represented by mid-range levels

of automation (4–6 in Figure 8). During Study 1, this line of thought led to the request for a voice control

interface, though also step-wise voice controls were requested twice.

The participants who chose a higher rate of automation often struggled with the manual interfaces. One

reported requiring ‘a lot of effort for small movements’, thereby losing motivation16, while another saw

more opportunities for errors. Finally, the two secondary users opting for complete automation compared

this to BCIs and deemed it scary, but beneficial if necessary17.

In short, the participants require a save manual fallback option in case of any form of automation.

Also, every increase of automation needs to be precisely evaluated with reference to a user’s remaining

capabilities in order to avoid forms of degeneration and retain independence. However, a non-automated

support for manual control could greatly benefit usability and error-avoidance of these important devices.

12Original German quote: ‘Selber entscheiden wie etwas klappt.’
13Original German quote: ‘Wenn der Arm das automatisieren würde, könnte ich mir auch eine Pflegekraft dazustellen. Für

mich ist der Arm die Verlängerung meines (gelähmten) Arms.’
14Original German quote: ‘Alles was ich delegiere, fordert mich nicht. Was mich nicht fordert lässt mich verfallen.’
15Original German quote: ‘Abläufe programmieren wäre auch cool, aber zu fehlerintensiv.’
16Original German quote: ‘Viel Aufwand für kleine Bewegung. Wenn ich keinen Becher selber einschenken könnte, hätte ich

auch keine Lust das mit dem Roboter zu machen.’
17Original German quote: ‘Chips sind gruselig, aber es wäre schön Leuten damit zu helfen und Interaktionen zu ermöglichen.’
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4. Adaptive DoF Control

As fleshed out in Section 3, a control for an assistive robot needs to be applicable in various different

situations (Section 3.1) and keep a focus on the users’ own contribution to the interaction. In the best

case, users are provided with a sense of self-determined autonomy coupled with a manual fallback option

to alleviate their concerns regarding safety and system failures (Section 3.2). Furthermore, such a control

needs to be sufficiently modular in order to account for the diversity of physical user capabilities, preferably

by being deployable with varying input devices. In contrast, it does not necessarily have to be perfectly

intuitive or easy to use off-the-shelf, but can instead evolve with experience; As the users of the previous

studies stated, they have sufficient incentive to train and reach proficiency with an interface, especially if

the process ends up giving them more options and capabilities. However, simply introducing more complex

and capable input devices is not expedient, as many users face physical difficulties with high-dimensional

input options (e.g. 3D Mice). For these people, shared control can be extremely beneficial as its perks

naturally scale with a user’s physical limitations.

Basically, the largest control discrepancy arises when using an input device with a low-dimensional

output signal c ∈ Rm to operate a robot with a high-dimensional steering interface u ∈ Rn, i.e. m ≪ n.

(E.g. using a chin-joystick with mchin-joystick ≤ 2 to operate the Jaco with nJaco = 7). The shared Adaptive

DoF Control focuses on bridging this gap by sticking to the established concept of modes, which is

well-known by users, and adaptively extending their capabilities based on the current situation [IV]. In

the context of this thesis, a mode is a mapping of input-DoFs to robot-commanding output-DoFs, i.e. a

matrix D ∈ Rn×m, such that

u = D × c. (1)

Usually, a mode will be an element of a defined set of modes D̂, the sum of which allows users to command

the n-dimensional robot to reach any pose in their specifications, only by operating their m-dimensional

input device (m < n). As an example, Figure 9 shows the manufacturer’s set of modes for the Jaco in

alignment to Figure 2, with nJaco = 7 and mKinova Joystick = 3.

X-Axis
Y-Axis
Z-Axis
Roll
Pitch
Yaw

Gripper

Translation Mode⏟ ⏞⏞ ⏟⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0
0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Rotation Mode⏟ ⏞⏞ ⏟⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0
0 0 0
0 0 0
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⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Finger Mode⏟ ⏞⏞ ⏟⎛
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⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Figure 9: Static Set of Modes D̂Jaco of the Default Control on the Kinova Joystick in Figure 2. Adapted
from [IV]

As with most available input devices, the embedded DoFs are predetermined, invariable, and aligned to

a fixed coordinate system. In the case of the Kinova Joystick, the translational DoFs are relative to the

user (i.e. in a world-reference frame), whereas the rotational DoFs are gripper-centric. Within this thesis,

such axis-aligned DoFs are referred to as cardinal DoFs. The given set of modes allows the robot to be

positioned in any arbitrary pose within its reach. However, on the way there, it cannot be moved along

arbitrary paths, as users are limited to the mode-imposed subset of cardinal DoFs. While this sounds

pedantic, it drastically limits the possible interactions and slows down or effectively rules out certain

operations. In practice, non-cardinal motions are often required, and able-bodied users rarely move their

arm along cardinal directions. For example, with the 3 modes presented in Figure 9, users have to decide

to move the arm either translational or rotational. If the users were now to approach an object, say a
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cup, with the robot, they would not be able to simply orbit the cup to select an orientation to approach,

but need to instead iteratively position the arm to one side and change the mode to reorient the gripper.

Similarly, pulling a door is simply not possible, as it requires the arm to move along an arc, i.e. following

a motion persisting of synchronised translational and rotational components.

Adaptive DoF Control follows the same principles of modes, but is able to provide DoFs that are

dependent on the situation and non-cardinal. To allow a wide range of motions, including screw motions,

the adaptive DoFs are also relative to the gripper; albeit possibly visualised differently for an easier user

understanding. With this, it aims to provide a set of DoFs that is more helpful in the current situation

than the classic standard options. A comparative example of a Two-Dimensional (2D) robot is shown in

Figure 10, which describes approaching an object (red star) using a 2-DoFs input device. In alignment with

the configuration of the Kinova Joystick shown in Figure 9, the exemplary presented translational DoFs

are in numerical reference to the world, whereas the rotational DoFs are gripper-centric. In Figure 10a,

one DoF of the current adaptive mode Dadaptive (bold orange arrow) could represent the straight diagonal

path towards the object, with the second DoF (dotted green arrow) allowing the user to orbit the target

to approach it from a preferred direction.

Dadaptive⏟ ⏞⏞ ⏟⎛
⎜⎜⎝

0.51 0
0.86 0.97

0 0.24
0 0

⎞
⎟⎟⎠

(a) Adaptive DoF Control
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⎜⎜⎝

0 0
0 0
1 0
0 1

⎞
⎟⎟⎠

(b) Classic Control

Figure 10: Comparison of Adaptive DoF and Classic Control for a Simple Approach Task with Numerical
DoF-Mappings to their Relative Sides

With the classic static control, two modes (Dclassic0 and Dclassic1) are necessary to reach a similar

functionality. This is shown in Figure 10b, where one complete mode of two cardinal DoFs (up, bold

yellow and right, dotted green) is required only to allow the user to command the straight diagonal path

towards the object. In addition to that, commanding the orbiting operation requires not only a second

mode with the rotation-DoF (dashed purple), but also repeated mode switching by the user, as this path

requires interactions of all 3 cardinal DoFs.

4.1. Demonstrator

The adaptive DoF control can be thought of as an extension to the classic mode control: In Figure 3, the

classic control pipeline is displayed with bold black arrows, with the adaptive DoF control being added on

top in red. Basically, it redefines the previously fixed set of available modes D̂ to be dependent on the

environment, as represented by the measurements z (including e.g. robot states and camera images). The

contemporary implementation of this concept sees an AI-system generating the set of modes D̂(z) based

on sensor data z.

Figure 11 shows a demonstrator system for this control: A 7-DoFs WMRA18 with a wrist-mounted

colour-and-depth camera19 to sense its immediate surroundings. This lightweight add-on has basically no

impact on the robots capabilities while capturing the most relevant scenes and avoiding clunky external

sensors limiting mobility and user acceptance. An embedded computer on the wheelchair holds the AI

and communication stack.

18Jaco 2 by Kinova (7-DoF research version) [34]. https://assistive.kinovarobotics.com/product/jaco-robotic-arm,
last visited 10th December 2024

19RealSense D435i by Intel. https://www.intelrealsense.com/depth-camera-d435i/, last visited 10th December 2024

16

https://assistive.kinovarobotics.com/product/jaco-robotic-arm
https://www.intelrealsense.com/depth-camera-d435i/


(a) Demonstrator (b) Camera Data

Figure 11: Physical Demonstrator used for Adaptive DoF Control (a) with exemplary Camera Data
(Depth (top) and Colour (bottom)) (a)

In addition to being a visualisation interface, the main input device of the demonstrator is a set of

head-worn smart glasses20 with an interaction design based on an existing driving system for assistive

wheelchairs [45]21. This original driving system uses distinct head nods for menu-navigation (such as

mode selections) and smooth head tilting as continuous joystick input to accelerate (tilt forwards) and

rotate the wheelchair (tilt sideways). However, the developers of the drive system cautioned, based on

their experience, the use of the forward-tilting interaction for the robot control. Even in their original

wheelchair driving interface, driving backwards is only supported separately. With this, the smart glasses

effectively only have a single DoF (mglasses = 1) for the adaptive control. Alternatively, the modular

system integration also allows to replace the glasses as input device, e.g. with a classic joystick, and use

the glasses only for visualisation.

4.2. Control Synergy

In application, adaptive DoFs only expand on the cardinal DoFs of the classic control. This assures a

fallback option for the user in the inevitable case of miss-detections or completely unknown situations.

Also, once a user has selected a mode, its associated DoFs stay fixed. While this may initially seem

counterintuitive, as the system thereby looses opportunities for on-the-fly error correction, it is essential

for usability: A system constantly adapting its active DoFs would be unpredictable and therefore unsafe

for the user, as sudden changes in the controlled DoFs can cause the robot to jerk and behave irrationally.

Instead, an accompanying visualisation informs the user about their options for new adaptive DoFs.

This was mostly arrow-based, with details depending on the specific User Interface (UI). An example can

be seen in Figure 13. The user can, at any point, decide to remain in their currently selected mode, switch

to newly updated adaptive DoFs, or fall back to classic cardinal DoFs. An example interaction is shown in

Figure 12, again with a 2D robot, but this time with two red target stars and only a single adaptive DoF.

The interaction is shown at three points in time: At t0, the robot is far to the left of the targets leading the

user to command driving closer towards them, either using the suggested adaptive DoF, or the cardinal

right. At t1, the adaptive system suggests a rotation to select a target, which the user initially ignores in

favour of continuing moving right. Just shy of t2, the user has selected the still suggested rotation and

turned left, which in itself leads to a new adaptive DoF at t2 that allows a target-oriented approach.

20Google Glass EE2 by Google. https://developers.google.com/glass-enterprise, last visited 10th December 2024
21munevo DRIVE by munevo. https://munevo.com/en/munevo-drive, last visited 10th December 2024
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t0 t1 t2

Figure 12: Example of Adaptive DoF Control: Two red star-shaped targets and a 2D-robot at 3 points in
time. For each point in time, a green arrow represents the currently suggested adaptive DoF.
Adapted from [V]

This level of AI is obviously not sufficient for human-independent robotic autonomy. However, as

discussed in Section 3.2, that would not be preferable in any case. Instead, the AI collaborates with the

user and basically empowers them to accomplish the task at hand easier and faster.

4.3. Usability

This novel concept of control was preliminarily tested in two studies (Study 5 [VIII], and Study 6 [X])

within a custom 3D Virtual Reality (VR) simulation environment [IX], which included a setup similar

to the demonstrator shown in Figure 11. Focussing on the control’s general usability, both studies

examined human-robot interfaces and, more explicitly, communication of robot intent (i.e. suggested

DoFs). Especially for such a novel control, a clear and, if possible, unambiguous UI is essential to avoid the

mode- and button-induced confusions reported in Study 2 (see Section 3). For these trials, the adaptive

DoFs were not supplied by a general-purpose system (as presented in Section 5), but instead simply

scripted for the given situations.

(a) (b) (c)

Figure 13: DoF Visualisations in VR: Classic (a), Double Arrow (b), and Single Arrow (c). Reused
from [VIII]

The first usability study (Study 5 [VIII]) assessed the general merit of adaptive DoF control, compared

it to the classic cardinal variation, and explored two visualisation options shown in Figure 13. During this,

the VR-controller’s joystick was used as a 2D input device (mStudy 5 = 2) for the system with an additional

button for mode switching. The UI therefore displays 2 DoFs (red and green arrows in Figure 13) and a

selection of 4 modes (blue circles in Figure 13). The study involved N5 = 39 able-bodied participants in a

remote study designed within-subject, during which each participant performed a simple pick-and-place

task 24 times (8 classic + 8 per adaptive visualisation type) with the order of controls being randomised.

For each trial, the Task Completion Times (TCTs) and number of mode switches were measured. In

addition, the users provided a subjective workload measurement for each control and visualisation after

completion.

The results show no significant differences in subjective workload or TCTs, although there seems to be
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a training effect, as the 2-arrowed adaptive variation was the overall fastest, if participants initiated with

the single-arrowed version. The number of mode switches on the other hand showed significant differences,

as there was a clear reduction with the adaptive controls independent of visualisation type.

Subjectively, users reported difficulties understanding the 3D arrows and ascribed this in part to poor

angles or them being concealed by the robot. In addition, participants reported the adaptive arrows to

include more rotations and thereby being slightly harder to understand than the classic ones, eventually

leading to an increase of mental load [VIII].

The second usability study (Study 6) [X] followed a similar setting and scenario, but examined options

to visualise changes in the suggested DoFs: Where the UI previously displayed two currently controllable

active DoFs, this study explored the option to visualise DoFs suggested by the system but not yet selected

or controllable by the user. In order to avoid visual clutter during this, the study reduced the input device

to only control a single DoF (mStudy 6 = 1). Further, by following an arrow-based visualisation similar to

Figure 13c, the new DoF could simply be represented with the second colour.

For a similar pick-and-place task, the study compared the classic control with two variations of adaptive

control: One with a continuous visual update of the new DoF, and one where the new DoF was only

shown once it deviated from the current DoF to a significant degree. In case of the latter, the user was

also informed of the change by an audible signal.

Study 6, involving N6 = 24 able-bodied participants, saw significant reductions of TCT, mode switches,

and workload when using either of the adaptive controls, with no significant differences among the two

variants. A subjective user-ranking of the 3 controls was not significant. Again, users responded to require

a bit of training for the adaptive control; however they also stated that eventually ‘routine set in fast’.

Regarding the comparison of the threshold-based and continuous visualisation, user responses varied.

For some, the threshold-based variant was simplest, as they trusted the system, reportedly did not think

as much and just acted when a new DoF was available. For others, this variant ‘felt too directed’, with

the continuous alternative giving them more freedom. Lastly, the qualitative user feedback indicated

that some users occasionally felt a lack of control when the adaptive suggestions did not match their

expectations. In these cases, a fallback option of a classic control could be a valuable addition. This was

intentionally omitted during these two studies to focus on the adaptive DoFs. [X]

4.4. Comparison to Literature

In comparison with the literature, adaptive DoF control interaction is fairly similar to controlling with

latent action spaces [39], as both approaches provide the user with the option to control situation-dependent

high-dimensional movements with low-dimensional input devices. For the latent action space-control,

a conditional autoencoder is trained on demonstrations of a task, with the autoencoder’s latent space

dimensionality being predetermined to be equal to that of the eventual low-DoFs input device (m). During

training, the encoder maps the demonstrated robot motion to the low-dimensional subspace based on the

current state, with the decoder reconstructing the motion from the subspace and the state. In application,

the decoder is used standalone, with the user’s m-dimensional control input being directly inserted to

the latent space. The decoder then aims to reconstruct the robot motion based on the current state and

control-input-defined latent space.

However, due to the black box nature of the latent-action-space-decoder, the robot’s motion does not

necessarily scale with user input, but can instead cause arbitrary movements, even given the authors’

defined control measures of Latent Consistency and Latent Scaling [39]. This can cause lower usability

and generally less predictable interaction for the user. In addition, the creation of the latent action space

involves a manual alignment of input-DoF to action-space-DoF and is scaled to a single scenario and input

device-dimensionality m. This makes it less generalisable than a situation aware adaptive DoF control.
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In that sense, the adaptive control is closer to the mode switch assistance by [16], where possible user

intentions are isolated and modes are suggested, based on which best disambiguates targets. However,

this assistance is designed with a focus on automation of tasks, as the system blends control once it is

sufficiently certain of the user’s intent. This stands in vast contrast to the adaptive DoF control, which

sees the user in sole control at every point in time. Further, the mode switch assistance is limited to

cardinal DoFs, thereby limiting manual interaction options.

Overall, the adaptive DoF control has the potential to embed general concepts of robotic interaction and

utilise them to provide the users with powerful techniques that are applicable in a multitude of situations.

These concepts can be amalgamations of various different motions based on the current situation, such

as approaching objects, avoiding obstacles, or operations specific to a task or certain held object (e.g.

pouring liquid). Further, the integration of complete sets of modes avoids the control from being limited

to a specific input device-dimensionality (m), but can instead be used with any continuous or discrete

input device, without requiring retraining or adjustments. During all of this, the user remains in control,

as no motion is carried out at any time without an explicit user input.
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5. Generating Adaptive DoFs

The usefulness of this control is inherently dictated by the quality and suitability of the provided adaptive

DoFs for the current situation. A successful evaluation therefore depends on an appropriate DoFs

prediction. In a perfect world, these generated DoFs directly correlate to the user’s intent, with the

primary (i.e. most likely) DoF allowing them to immediately achieve their desired result. In reality

however, any system can only estimate the user’s intent based on sensory information of the environment.

Modelling this, let U be the Random Variable (RV) representing the n-dimensional direction of robot

motion desired by the user. Also, let Z be the random variable describing the current situation as

measured by the systems sensors (e.g. camera data). This allows to define

U |Z = z (2)

to follow a conditional probability distribution. As such, this random variable models the direction of

motion U desired by the user given the current situation Z = z. It is assumed that U and Z exist. This

section explores two distinct approaches of initially modelling U |Z = z and subsequently using it to

extract adaptive DoFs.

It was initially planned to generate the adaptive DoFs end-to-end, using a state-of-the-art neural network

processing image data. Surprisingly though, considering the recent successes and great performances of

the community with AI, the results for this specific application were unsatisfying. Therefore, an analysis

evaluated why this is the case, examining the task, model capabilities, as well as the available data. All of

this is presented in Section 5.1.

As an alternative, a functional generation of adaptive DoFs was successfully developed based on

the probabilistic combination of (simple) elemental behaviours. The complete system is showcased in

Section 5.2, where its technical viability and general user acceptance were initially tested in a controlled

lab study, followed by an extensive study with the target group in the semi-unstructured environment of a

trade fair.

Both variants interpret the environment based on image-data and produce complete and holistic sets of

DoFs; meaning that the sets’ DoFs are respectively orthogonal and thus span the complete n-dimensional

space of the robot’s motion.

5.1. End-To-End Approach using Deep Learning

As evident by the current state of the art in image processing, machine-learning models such as

Convolutional Neural Networks (CNNs) have immense capabilities of feature analysis, context under-

standing, and information extraction. As such, it seems obvious to directly generate DoFs from images

using CNNs. However, this is not an established or trivial task, as the requirements implied by the

control concept do not fit to existing methodologies. This includes model architectures, output-definitions,

metrics, as well as available data.

5.1.1. Proof of Concept in 2D

As proof of concept and in order to gather necessary insights for this approach, a 2D simulation environment

was developed [IV]. This simulation consists of a simple robot with n2D = 4 DoF (up, right, rotate, grasp),

2 boxes, and a target mark (Figure 14), with the intentionally loosely set task of bringing the boxes to

the target. During this task, the boxes could be triggered to have a physical spike to give the user an

incentive to grasp from a defined side and thus diversify the interaction. The associated input device

comprises 4 binary keyboard buttons (i.e. mkeyboard = 2), with a mode switch being triggered by idle time.
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In alignment with the Jaco’s control, two modes are available respectively for both classic and adaptive

control.

ab

c1

c2

d

Figure 14: 2D Simulation Environment, including the Robot (a), its Gripper (b), Blue Boxes (c1 and c2,
the Latter with a Spike), and a Red Target Circle (d). Adapted from [IV]

The data necessary for supervised learning was generated using a gamepad with 4 continuous input

axes (similar to 5b) to allow operators to synchronously command arbitrary robot motion. With this,

researchers recorded separate datasets for the scenario with and without spikes, where each sequence

started with randomised poses for each simulation element. As defined by the simulation task, the

operators further commanded the robot to grasp the boxes one after another and retrieve them to the

target. A statistical dataset overview can be seen in Table 2. The data recorded consists of sequences of

image-action pairs, where the image is a robot-centric top-down view of the situation (similar to Figure 14)

and the action is the user-commanded relative n2D-dimensional motion of the robot. The supplementary

video22 provides an overview of the interactions of all components of the 2D simulation with both classic

and adaptive control interfaces.

Table 2: Statistics of the 2D Dataset

Dataset Name Spikes Operators Sequences Data Points

2D Default No 2 392 29 927
2D Spiked Yes 3 488 28 075

The datasets were used to train a simple CNN [IV] capable of generating adaptive DoFs based on image

data available at runtime. Hereby, the model’s designed purpose is not specifically simply predicting

the apparently correct direction of robotic movement (i.e. that controlled by the user during training),

but instead suggesting DoFs most likely to be controlled by the user, given the current situation (see

Equation 2). This distinction is designed to allow a probabilistic treatment of the model and data.

As such, the model aims to describe the probability distribution U |Z = z of DoFs most likely to be

commanded, given the current situation (see Equation 2). For this purpose, U |Z = z is modelled to follow

a multi-variate normal distribution N (µend-to-end,Σend-to-end) with mean vector µend-to-end ∈ Rn and the

symmetric, positive definite covariance matrix Σend-to-end ∈ Rn×n. In this approach, the dataset’s labels

(n-dimensional motion vectors) are seen as samples of this distribution [IV].

For safety reasons, the robot arm should never move without input by the user. This coincides with the

adaptive DoF control placing the user as sole origin of motion. As such, no robot movement is performed

without explicit user input. This also means, that an adaptive DoF only needs to encode a directional

line (e.g. left and right), without any specific preference therein. The ultimate sign of movement along

this line, as well as the velocity of motion itself, are then directly defined by the user’s control input

(e.g. direction and inclination of a joystick). This is identical to classic cardinal control. With this, the

22Video of 2D simulation available at https://www.informatik.uni-bremen.de/agebv2/downloads/videos/GoldauPetra21.
m4v, last visited 10th December 2024
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model’s output only needs to describe this directional line to be a valid DoF and is therefore independent

of amplitude and sign. In practice, this means that U |Z = z is zero-centric, i.e. µend-to-end = (0, . . . , 0)
T

,

and the model only needs to estimate the covariance matrix Σend-to-end.

To do this, the model includes a novel custom head as shown in Figure 15, which was specifically

designed for adaptive DoFs: The CNN backbone (e.g. based on MobileNet [50]) and head of the model [IV]

convert the sensor-generated image data to a set of motion vectors Y ∈ Rn×k, Y = (y1, y2, . . . , yk), with

yi ∈ Rn. A custom layer interprets these vectors as sigma-points (deterministic samples) of the zero-centric

distribution described by Σend-to-end and estimates Σend-to-end as

Σend-to-end =
1

k

k∑︂

i=1

(︃
yi

∥yi∥2

)︃(︃
yi

∥yi∥2

)︃T

. (3)

Further normalisation and numerical stabilisation (see [IV]) assures Σend-to-end to be positive semi-definite

with a trace of tr (Σend-to-end) = 1. The latter is used to stabilise the loss function during network

convergence.
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Figure 15: End-to-End Model Architecture Overview with Exemplary Data of n = 3. The covariance’s
values are colour-coded, with lighter areas having higher absolute values.

At this point, the covariance should describe the distribution of likeliness of motion over all possible

directions in n-dimensional space. The model head now uses a Principal Component Analysis (PCA)

to isolate main axes of the distribution, effectively generating a list of directions (DoFs) sorted by their

eigenvalues (i.e. importance), which can directly be used as a complete mode set D̂.

During training, a loss based on the Mahalanobis distance (later termed Mahalanobis-loss) was deployed

to measure the representation of the label motion within the predicted covariance. Effectively, this

punishes the network for generating covariances with small extents in the desired direction. Coupled with

the aforementioned (tr (Σend-to-end) = 1)-normalisation, this leads to the desired effect.

In addition, this architecture experimented with a Moment Layer as new type of pooling layer: CNNs can

often be split into two parts, one operating on structured image-data (e.g. with convolutional operations)

and one working on flattened dimensionless data (e.g. with fully connected layers). Usually, the transition

between these two parts is performed by either flattening the image-data or pooling the image dimensions

to a single element per channel. However, the former option results in a large flattened vector that makes

further operations expensive, whereas the latter loses all positional information in the images, which is

necessary for adaptive DoFs.

Similar to convolutional layers, the novel Moment Layers expand on a concept from classic computer

vision: Based on Hu-Moments [25], this layer embeds information from image-like data in a flattened

vector using a position-dependent weighted average. In this, all operations are strictly linear, leading to

simple gradients and a quick convergence during training. As these moments are often applied in classic

computer vision and are still being researched [65], they hold a large potential for CNNs. As such, the

layer processes image-based data and retains positional information while still drastically reducing the

size of the output vector.
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Evaluation in 2D A user-centric evaluation (Study 7) of 2 successfully trained networks (one with spikes

on the boxes and one without), aimed to serve as a proof of concept of the adaptive DoF control and to

compare it to a classic control alternative. Here, 4 binary buttons were used to steer the robot along a

total of 2 DoFs (2 buttons per DoF, one positive and one negative). In addition, an idle time of 5 seconds

without user input caused a mode switch, thus directly exchanging the controllable DoFs.

For the classic control, this meant a cycling of 2 cardinal DoFs in 2 modes. For the adaptive control,

each such idle time triggered an update of the adaptive DoFs based on the current situation and provided

the user with those newly generated DoFs. At this stage, the adaptive DoF control did not have an option

to return to previously suggested DoFs or fall back to classic controls.

The evaluation itself was conducted as an unsupervised within-subject online study with N7 = 23

able-bodied participants. Here, the participants were instructed with introductory videos explaining

the interfaces and control methods, followed by them completing each box scenario (with and without

spikes, see Figure 14) 6 times, 3 of which with every control. In the end, the participants evaluated their

experiences in a questionnaire. In order to gain an impression of training effects, a small subset of users

(4) were given a more extensive training session of 10 minutes afterwards, consequently repeating the

experiment.

The results show a significant reduction in measured task execution times. This was confirmed by the

users who subjectively felt the adaptive control to be faster, though more complex. After the additional

training, the involved users rated the adaptive control to be faster and easier, though still not quite as

easy as the classic control [IV].

5.1.2. Deployment in 3D

Generating adaptive DoFs in a realistic 3D environment is exceedingly more difficult than in case of the

previously shown proof-of-concept 2D environment. With respect to the demonstrator in Section 4, this

transition increases the robot’s DoFs to nJaco = 7 and involves more complex sensory systems creating both

colour and depth images of diverse environments. However, general concepts, such as the requirement for a

high-dimensional input device for data generation, remain. With 7 available DoFs and more opportunities

for different approaches of tasks, handling the robot during recording also needs to be timely and smooth.

This is especially relevant, as the group of data-generating users needs be expanded in comparison to the

2D example in order to capture a glimpse of the variety of individual robot interactions.

As an assistive robot arm would, in a perfect world, behave similar to that of an able-bodied person,

the idea used for data generation was to capture the natural interaction of an able-bodied user’s arm

Figure 16: Screenshot from the AdaptiX 3D Simulation Environment. Adapted from [III] © 2023 IEEE
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and transfer this to a robot wherever possible. This way, operators can concentrate on the task at hand

and are not distracted or limited by their own input device. For this, a 3D tracking and high-resolution

simulation environment [IX] was developed, in which a digital twin of the demonstrator’s robot arm

directly follows the movements of a hand-held VR-controller23. As such, it allows for arbitrary movements

by the user, quick recordings, and associated higher numbers of recordings and participants.

Figure 16 shows a screenshot of the simulation environment build on a realistic high-quality gaming

engine24. With this, it is reasonable to assume a good transferability of the data to reality. This tool

includes realistically behaving models of the assistive robot arm, the colour-and-depth camera, and various

3D household objects. The arm can be controlled programmatically, follow a VR controller, or a real

robot in a setting of mixed-reality. This is complemented by a custom grasping system and realistically

behaving doors with handles. The resulting general purpose mixed-reality framework was published free

and open-source [IX]25. The mixed-reality interactions were also partially used for the aforementioned

preliminarily interaction tests of Study 5 and 6 [VIII, X].

Nevertheless, at least a small subset of data recorded with the real system is required for additional

training in order to bridge the simulation-reality-gap. For this, the real demonstrator was used and

controlled with a 3D mouse (e.g. Figure 5c). However, where the simulation environment allows for

untrained individuals to record data, the 3D mouse requires the assignment of trained engineers for smooth

and purposeful operations. This, coupled with the lower speed of a real robot, limits the recordable

amount of real data.

Figure 17: Overview of Scenarios in 3D. Reused from [III] © 2023 IEEE

To achieve a good representation of relevant scenarios, variations of the participatorily developed

scenarios, as listed in Section 3.1, were implemented in simulation and reality. Screenshots are shown in

Figure 17, with videos of all scenarios being shown in the associated supplementary video26.

23VIVE Pro 2 by the HTC Corporation. https://www.vive.com/us/product/vive-pro2-full-kit/overview/, last visited
10th December 2024

24Unreal Engine by Epic Games. https://www.unrealengine.com, last visited 10th December 2024
25AdaptiX project. https://adaptix.robot-research.de, last visited 10th December 2024
26Video of simulated scenarios available as Supplemental Items at https://ieeexplore.ieee.org/document/10341459/media,

last visited on 10th December 2024
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Table 3: Statistics of the DORMADL Dataset [III] © 2023 IEEE

Data Origin Operators Sequences Data Points Hours of Data

3D Simulation 38 2 973 659 k 15.4
Reality 4 986 502 k 13.9

The complete 3D Dataset of human-Operated Robot arm Motion in Activities of Daily Living

(DORMADL), combines data of both simulation and reality and was published free-of-charge [III]27.

Its statistics are shown in Table 3. This large dataset embeds over a million data points in approximately

3 000 individual sequences, i.e. recordings. Each time-stamped data point includes the robot’s current

pose, motion, and action label, as well as sensory information of colour and depth data generated by the

wrist-mounted camera (see Figure 11). In this context, action labels are manually tagged sub-sequences

within a recording. They describe necessary sub-tasks performed by the robot and are generally composed

of a verb and an object (e.g. Grasping a cup). Table 4 provides an overview of available action labels.

Table 4: Overview of Action Components. Reused from [III] © 2023 IEEE

verbs Approach, Grasp, Let go, Push, Retrieve
objects block, book, bottle, candle, cap, cup, door/handle, food, fork, microwave door,

milk carton, plate, spoon, tea
singular verbs Align [cup], Close [door], Fill [cup], Press [handle], Pull [door]
stand-alone actions Discard, Drinking, Eating, Idle

In contrast to other datasets, the DORMADL dataset partitions the scenarios into small short-term

sub-activities (termed actions in this context, see Table 4) instead of more general activities, such as e.g.

eating with knife and fork (cf. [1, 6, 49]). Furthermore, each recorded scenario represents a continuous

task execution, including intermediate steps to objects, whereas other datasets only store pairs of images

to grasp or object poses (cf. [7, 15, 38, 61]). Lastly, the dataset’s high-dimensional robot motion was

generated by human operators with purposeful interactions of the task in mind and without external

limitations of motions otherwise induced by obstructive interfaces.

5.1.3. Training Adaptive DoFs in 3D

The multi-facetted structure of the DORMADL dataset allows the training of very different models on

the same data. Among others, these can incorporate distinct model heads for motion and action labels,

and either be single-shot models or include sequential data with a time-dimension. Following the same

principles as in 2D, a number of models with different sizes and architectures were trained on varying

subsets of the dataset. In general, they build upon pre-existing backbones (e.g. MobileNet V2 [50]) and

mostly incorporated the previously described head for DoF-based motion prediction (Figure 15) and/or a

simple classification prediction head for the action labels. The actual selection of heads depended on the

attempted scope of the model.

Quality Criteria In order for the adaptive control to be a reasonable (at least functional) alternative to

classic cardinal control, certain criteria must be met. Once deployed to affected, these will have to be

user-centric and be mostly qualitative, such as the felt reliability (i.e. how able the user feels to complete

the task with this control), consistency (i.e. seemingly continuous and predictable adaptive DoFs), and

relatability (i.e. the user’s ability to understand reasons behind DoFs suggestions).

Before that, more quantitative values can be acquired by analysing prediction metrics during model

convergence. For this, the Mahalanobis-loss is used as well as a custom Percentage-of-Motion metric (PoM).

27DORMADL dataset. https://www.kaggle.com/f371xx/dormadl, last visited 10th December 2024
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The latter represents the percentage of the true motion (i.e. that operated during data recording) that

is controllable using only the first f ∈ N adaptive DoFs, where f < n. It does so by calculating the

squared relative length of the true n-dimensional motion projected into the f -dimensional subspace. This

subspace is spanned by the respective adaptive DoFs as defined by the set Ef = {e1, . . . , ef , v1, . . . , vf}
of predicted eigenvectors ei and associated eigenvalues vi. As such, the PoM of true motion u for the first

f adaptive DoFs, as defined by Ef , is given by

PoMf (u,Ef ) =

(︃ ||projection (u,Ef )||2
∥u∥2

)︃2

. (4)

As the f eigenvectors form an orthogonal basis and ∥u∥2 = ∥ei∥2 = 1, this can be reduced to

PoMf (u,Ef ) =

(︄⃓⃓
⃓⃓
⃓

⃓⃓
⃓⃓
⃓

f∑︂

i=1

< u, ei > ·ei
⃓⃓
⃓⃓
⃓

⃓⃓
⃓⃓
⃓
2

)︄2

(5)

=

f∑︂

i=1

< u, ei >
2, (6)

with < ·, · > as the scalar product of the two vectors.

In combination, these two metrics (Mahalanobis-loss and PoM) can be thought of as the equivalence

to a Cross-Entropy-loss and Accuracy-metric in classification problems: The loss function describes the

well-behaved numerical measurement used during model training, whereas the metric represents the data

in a more human-readable form and comes closer to describing the actual engineer-targeted result. For

the PoM, a value of 100 % would represent the user’s ability to perfectly retrace the labelled movement,

solely using f DoFs. If the dimensionality m of the input device is known during training, this metric can

be designed such that f = m, thereby indirectly providing an inverse indicator on the necessary number

of mode switches.

The baseline value for the Mahalanobis-loss is equal to the vector dimensionality n, as this would be

the case for a perfectly spherical covariance. Theoretically, a perfect covariance representing only the

true motion would have a Mahalanobis-loss value of 1. Likewise, the baseline value expected for the

PoM lies at 1/n, i.e. a fair distribution of motion along all DoFs, with an optimum at 100 %. For the 3D

case, the baseline would therefore be a loss value of nJaco = 7 and a PoM value of 1/nJaco ≈ 14 % per

dimensionality f .

Achieved Results Numerous CNNs with a variety of architectures, backbones, heads, and hyperpara-

meters were trained on the 3D motion data. Surprisingly however, considering the most recent general

successes of machine learned AI-models, the results turned out to be poor and underwhelming. Often, the

performance on test data was below the expected baselines. In practice, once a reasonable improvement

could be seen on the training data during convergence, metrics on the test data diverged. Figure 18 gives

an impression of this behaviour by exemplarily displaying the progression of Mahalanobis-Loss and PoM

for six different models. Here, the plots of a single model’s training have the same colour, with a solid line

representing the evaluation on the test data and a dashed line showing the process’ results on training

data. Clearly, the trainings shown suffered from overfitting. Not shown in the graphs are smaller networks

which did not converge.

Using the DORMADL dataset’s multiple scenarios and labelled actions, it is possible to compare the

achieved results within the data to evaluate if certain conditions explicitly lead to the issues. This should

highlight whether specific scenarios or actions extremely over- or underperform and thereby distort the

average numbers. Figure 19 shows the evaluated Mahalanobis-loss on predictions on the training and
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Figure 18: Validation Divergence during Model Training

test set, separated by scenario. For this, a late-stage model was used (i.e. after overfitting) in order to let

extremes get more pronounced. However, the data does not show any major outliers, thereby disproving

an imbalance regarding scenarios. Figure 33 in the appendix shows the equivalent data of Mahalanobis-loss

per labelled action in the dataset. While the results shown there are more diverse than those of the

scenarios, it is still inconclusive and has no major outliers. Some actions perform better than others, but

this generally aligns for both test and training sets.
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Figure 19: Mean Mahalanobis-Loss per Recording and Scenario for Test and Training Data

Running trained models on a live system to attempt an initial measurement for the qualitative metrics

also turned out less than ideal: The proposed DoFs where partially shaky or erratic which led to the

operator not being able to grasp the intent behind the DoFs. This naturally accumulated to being an

unreliable control in total.
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5.1.4. Analysis of Trainability in 3D

Based on the unexpectedly poor results achieved during training, the question arose whether the task of

generating usable DoF in these settings is solvable in itself, given the provided data. However, empirically

proving non-trainability is difficult. Instead, the following is an attempt to verify the complete operation

chain, including kinematic transformations and robot configurations, data logging and preprocessing,

as well as network architectures and associated functions. For this, the process was decomposed into 5

essential elements to be thoroughly tested in isolation. These are 1. pre-processing and preparation of

data, 2. the network’s input, 3. the network’s ability to gather semantic information from the data, 4. the

network’s output definition and associated loss, and 5. the full chain.

Data Pre-Processing and Preparation (1.) The foundation for any supervised learning is the quality

and preparation of available data. Inconsistencies in the provided data can directly lead to failed trainings.

In this context, the network attempts to learn a distribution of motion-directions given image data of the

environment. For this, the necessary motion-image-pairs are directly supplied by the used DORMADL

dataset.

However, the relative camera motion could not be measured directly during dataset generation, but

had to instead be calculated post-recording based on timestamps and poses in world coordinates. This,

in addition to data smoothing and handling of missing data, required some non-trivial data processing.

Even small issues in this pipeline can cause the output motion to significantly deviate from the truth.

Figure 20: Motion Verification Tool: Dimensionally Isolated Direction Arrows. Adapted from [III] © 2023
IEEE

Luckily, the validity of the final motion-image pairs can be verified fairly simply as the data is sequenced

and can be run as a video. This makes it possible for researchers to visually inspect the images and assess

the general direction of motion. Two distinct verification tools were implemented by two independent

researchers: One of these (Figure 20) visualises a single data point completely and in isolation, individually

representing the dimensions of motion (except grasping) as arrows in a coordinate system (top right).

This allows to subjectively inspect the directions of motion and composition of the vector. In the situation
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shown in Figure 20, the user is placing down the blue box by lowering the arm (green arrow) in addition

to a slight pitch-rotation (red curved arrow).

The other tool (Figure 21) shows the motion vector from the dataset as arrows overlaid with the image.

If everything is correct, the actual motion in the image corresponds to these arrows. Several arrows start

at the same position, because the motion depends on the unknown depth there. This allows to visually

verify the correctness of camera calibration, coordinate transforms and motion vector computation. In the

case of Figure 21, the user is panning to the right, coupled with a slight left-wise yaw rotation.

Figure 21: Motion Verification Tool: Overlaid Pixel Vectors

Using these tools, both researchers independently verified the plausibility of the image-motion-pairs on

multiple recordings in the dataset. Example videos of both tools can be found online28. Following this,

the data preparation is rejected as cause for the poor results.

Network Input and Subsequent Semantic Understanding (2., and 3.) Once data is prepared, the next

element in the chain is having a model that can extract semantic information and feeding the data into it.

Due to the black-box nature of neural networks, a loss of information in these areas can occur without

major indications to the engineer. In this case, the network would not be able to identify the situation

Z = z. This can be caused, for example, by vanishing gradients, a poorly defined network architecture, or

a faulty input encoding.

In order to specifically examine these elements on the network and data without being interfered by the

output-definitions, a simple task was trained using a well-known approach: Predicting the action labels

(see Table 4) based on image data. For this, a softmax head was added to the existing architectures and

trained alongside the motion-prediction-head of Figure 15 with a crossentropy-loss.

Figure 22 shows the model’s predictions for two recordings on a timeline. Correctly predicted data is

drawn as lighter turquoise circles, whereas red crosses show prediction errors next to the true labels as

black circles. The graphs show very good predicted values, with errors mostly occurring at the beginning

or end of actions. This is reasonable, as the data was labelled manually and action transitions could often

28Videos for the motion verification tools available at https://www.informatik.uni-bremen.de/agebv/DoF-Adaptiv#

Motion_Verification_Tools, last visited 10th December 2024

30

https://www.informatik.uni-bremen.de/agebv/DoF-Adaptiv#Motion_Verification_Tools
https://www.informatik.uni-bremen.de/agebv/DoF-Adaptiv#Motion_Verification_Tools


0 25 50 75 100 125 150 175

Approaching bottle

Approaching candle

Approaching milk carton

Eating

Grasping bottle

Grasping milk carton

Let go of the bottle

Let go of the milk carton

Retrieving bottle to wheelchair table

Retrieving milk carton to wheelchair table

Datapoint

A
ct

io
n

s Assigned Labels

False Predictions

Correct Predictions

Actions per Datapoint in Recording 2048 of the Train Set. Accuracy: 71.4 %

(a) Training Set Recording

0 50 100 150 200

Approaching book

Approaching bottle

Approaching tea

Grasping book

Grasping bottle

Let go of the book

Let go of the bottle

Retrieving book to wheelchair table

Retrieving bottle to wheelchair table

Datapoint

A
ct

io
n

s

Assigned Labels

False Predictions

Correct Predictions

Actions per Datapoint in Recording 2689 of the Test Set. Accuracy: 69.2 %

(b) Test Set Recording

Figure 22: Plot of Predicted Actions for Recordings of the Training Set (top) and Test Set (bottom)

not be perfectly defined to fixed points in time. The longer miss-detection in Figure 22b (Approaching

bottle instead of Approaching book) was analysed in video and ascribed to both objects being adjacent.

In short, the action label prediction was fairly successful. There was some hope that the introduction of

this additional information would assist the overall model convergence by contextualising the motion into

a bigger picture. This turned out not to be the case, as the metrics on the predicted motions did not

significantly change.

Nevertheless, this process showed the model being capable of gathering information from input (2.)

and successfully interpreting it semantically (3.) to produce conclusive results. This basically verifies the

complete network architecture, except for the motion-prediction head that ran parallel to the one tested.

Network Output Definition and Loss (4.) The model’s motion-head (Figure 15) is a novel design that

only indirectly predicts the provided labels by preparing a covariance matrix and having the Mahalanobis-

Loss bridge the remaining mathematical gap. As all elements in this prediction head are non-standard in

deep learning, it is possible that this general idea of covariance-based handling of vector-based labels is

not functional in deep learning or that the given implementation is faulty. In this case, vanishing gradients

or a poorly designed loss-derivative could hinder convergence for example.

Once again, a simpler task was trained on the same models in order to examine the interaction. In this

case, the model architecture stayed the same, with only the datasets preprocessing being slightly adjusted:
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Instead of providing the camera’s motion vector, it outputs the inclination vector, i.e. the direction of

gravity relative to the camera. With this, the data is conceptually very similar, as both the motion

and the gravity-direction are vector-based and calculated based on available robot poses, only that the

direction of gravity only has ngravity = 3. It is essential however, that the direction of gravity does not

depend on the user, and also requires substantial image understanding. As such, the pipeline up to this

point can be tested in its entirety without needing to take the data-generating users into account.

Figure 23 compares the Mahalanobis-loss results of two models per scenario. One of these (Figure 23a)

was classically trained on motion data, whereas the other (Figure 23b) was trained with the gravitation

vectors. A green vertical line represents the expected baseline value n for each plot, as the dimensionality

of the prediction vectors need to be taken into account. The best possible value of 1 remains unchanged.

The graphs are aligned to one another with respect to their dimensionality.
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Figure 23: Predicted Motion Vectors (top) versus Predicted Gravitation Vectors (bottom)
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The data clearly shows good predictions for the model trained on gravitation-vectors. Even taking the

reduction of complexity into account, the results are vastly better than those on motion-data.

This thereby shows the promising functionality of the applied output definition and loss combination,

which was further endorsed by the functional 2D proof of concept in Section 5.1.1.

Overall Reasonability of Approach (5.) With the points listed above, the complete training pipeline was

examined: 1. The data preparation was visually verified with two independent tools by two independent

developers. 2. The models can load the data correctly and 3. extract semantic information from it, as shown

by the successfully predicted actions and gravitation vectors. Finally, 4. the handling of vector-based

labels with a covariance-output and Mahalanobis-loss was shown to be effective on data similar in shape

and origin to the desired motion data, only missing the influence of the data-generating users.

As such, the data itself has to be taken into account once more. Here, the theory is, that if the technical

model architecture is functional, then the issue must lie in the data itself. For this, the recordings were

visually reevaluated by multiple researchers, who attempted, step-by-step, to predict the motion the

camera would be taking next.

This task turned out to be exceedingly difficult: While the researchers would generally be able to

predict the overall goal, the precise motion at a certain point would often elude them. The variability in

the motion controlled during data generation was simply too high. For example, given an obstacle in the

path to an object, the goal of reaching the object is absolutely clear, whereas the path around the object

is completely free: Some users would pull their arm back and make a large motion, while others move

above the obstacle and jet another group circumvented it horizontally. Interestingly, this aligns with the

results of the model being able to predict the actions, but not motion directions.

This analysis was done on multiple recordings in different scenarios, always with similar results.

Individual situations were often very similar, however approached by the users with vastly differing

motions. Coupled with the technical verification of the training, it has to therefore be concluded that

the direction of movement, as performed during this training, is too diverse and cannot be predicted

end-to-end with such a machine-learning model generalised over all users.

Based on this, no further attempts were made to train other types of AI models, such as transformers

for example, on the problem. With these kinds of issues, a completely new approach is necessary to both

incorporate recorded motion data and eventually model a prediction output. This is, however, outside the

scope of this thesis.
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5.2. Behaviour-Based Approach

A more analytical approach to generating adaptive DoFs was developed by probabilistically combining

custom designed behaviours. These are fairly simple and elemental robotic operations, such as Heading

towards light or Pulling back after collisions, and directly generate motion based on sensory input.

Prominently used by W. Grey Walter’s tortoise robots [60], they are studied in the field of behaviour-based

robotics, where alternating between simple sequences can create complex robotic interactions [5]. Generally,

a single behaviour is an isolated elemental operation that only serves a distinct purpose and does not

aim for conceptual completeness by itself. This makes designing and implementing individual behaviours

fairly simple.

In comparison to directly generating the adaptive DoFs end-to-end with a deep-learning-based setup

as in Section 5.1, this approach allows for custom probability regulation, memory management, and a

more reliable evaluation of capabilities. In terms of specific implementations, this variant also allows the

representation of directed DoFs, which can ease computation and error detection during development.

Figure 24 displays the isolated effects of two exemplary behaviours without interaction. Based on the

known (e.g. sensor-measured) relative pose of the water bottle, one behaviour (24a) may represent the

purely translational approach, whereas another (24b) solely reorients the gripper towards the goal.

(a) (b)

Figure 24: Two Classic Behaviours of (a) Approaching an Object and (b) Rotating towards it. Represented
top down using a Jaco robot with ghosts and arrows to show motion. Adapted from [V]

For assistive robotics, given sufficiently vast behaviours and knowledge of user intent, the behaviours’

underlying operations could theoretically be directly used as adaptive DoFs (though not necessarily strictly

fulfilling the definitions of Section 4). In that case, the interaction would be similar to switching between

automated trajectories, as in [30]. For the general case however, it is neither feasible to introduce a

sufficiently large set of behaviours, nor to assume the user’s intent to an adequate degree of certainty.

Often enough, users will be indecisive or even explicitly desire to command motions only possible by

superimposing multiple behaviours. Therefore, a simple distinct activation-triggering of behaviours is not

feasible for a shared robotic control.

Instead of such a binary selection, a set of behaviours B can be handled probabilistically, allowing for

an encompassing statistical analysis to generate the set’s combined distribution, and eventually adaptive

DoFs. Conceptually, these DoFs represent the directions of movement most prominent over all behaviours

of B. To showcase this, a second approachable object (a book) is added in Figure 25, thus triggering an

additional Approach-behaviour. Based purely on these two equally likely behaviours, resulting adaptive

DoFs could point towards the objects’ combined centre point (bold green) and orthogonal direction of

major distinction (dashed green). These directions are most prominent over B, as each behaviour includes

a large component going forwards and a lesser component moving sideways.
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Figure 25: Combining Two Approach-Behaviours (orange) into Most Prominent Directions of Movements
(green). Adapted from [V]

5.2.1. Probabilistic Combination of Behaviours

Probabilistically speaking, this approach assumes that the user aims to control a motion composed of

one or more behaviours from the finite set of available behaviours B. This question of which behaviour

the user desires is described by the random variable G, which is dependent on the current situation

Z = z and is assumed to exist. Further, for each behaviour b ∈ B, the random variable Vb describes the

direction of motion U required by the user to perform the behaviour’s underlying operation in the current

situation Z = z given the desired behaviour G = g. Vb is assumed to exist and follow a multivariate

normal distribution hb with mean µb ∈ Rn and covariance Σb ∈ Rn×n for a fixed Z = z,G = g:

Vb ∼ hb = P (U |Z = z,G = g) (7)

Vb ∼ N (µb,Σb). (8)

Conceptually, this now depicts each individual behaviour’s application with an associated random

variable and multivariate probability distribution, thus allowing to treat them as mixture modes of

U |Z = z as a mixture distribution. In this behaviour-based variant of generating adaptive DoFs, U |Z = z

is the random variable describing the DoFs most likely to be commanded, given the current situation (see

Equation 2). It can be constructed using Vb over all behaviours B as:

U |Z = z ∼
∑︂

b∈B
P (Vb|Z = z) · αb, (9)

with αb as the scaling factor of the mixture mode, in this case modelling the likeliness of the user to follow

the associated behaviour

αb = P (G = b|Z = z) . (10)

In the implementation, a behaviour’s distribution hb is represented by a set of sigma points (deterministic

samples) Qb, similar to their usage in unscented Kalman filters [57]. These define the behaviour’s normal

distribution as N (µb,Σb) (see Equation 8) with

µb =
1

|Qb|
·
∑︂

q∈Qb

q, and (11)

Σb = S (Qb, µb) (12)
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where S (Q,µ) is the general covariance of a set of sigma points Q with defined reference point µ:

S(Q,µ) =
1

|Q| ·
∑︂

q∈Q
(q − µ)(q − µ)

T
. (13)

Figure 26 shows these sigma points in different colours for 3 exemplary fictitious behaviours.

As shown in [V], the expected value µbehaviour-based and covariance Σbehaviour-based of the mixture

distribution can be directly calculated from the sigma points Qb of all behaviours b ∈ B. The resulting

distribution is shown as a dashed ellipse in Figure 26 and can be calculated as

µbehaviour-based =
1∑︁

b∈B
αb

·
∑︂

b∈B
αb · µb, and (14)

Σbehaviour-based =
1∑︁

b∈B
αb

·
∑︂

b∈B
αb · S(Qb, µbehaviour-based). (15)

The resulting mixture distribution now represents the likeliness of all directions, summed over all

behaviours. Based on this, adaptive DoFs can be selected such that the m-dimensional space spanned

by the m primary DoFs encompasses the largest share of the distribution. In other words, the DoFs are

chosen to minimize the expected square distance from the distribution to the m-dimensional space [V].

This is usually achieved by applying a PCA on the covariance at a defined centre of u0 = µbehaviour-based.

However, as discussed in Section 5.1, a non-zero default value is not applicable in the context of such a

Yaw-Rotation

Z-Translation

Sigma Point Visualisation in 2D

Look Around
Simple Forward
Approach Home
u0 = µbehaviour-based

u0 = 0
DoF

Figure 26: Illustration Representing U |Z = z as a Mixture Distribution. The dots are the sigma-points
of three fictitious behaviours (red, blue, orange), with the ellipses showing the corresponding
mean and covariance. The black dotted ellipse shows the overall mean and covariance of the
mixture, the bold ellipse corresponds to S from Equation 16, and the black arrow shows the
single optimal DoF. Mixture weights are represented by the distance of the sigma points to
the origin. Adapted from [V]
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control interface, as it would result in robot motion without user input (i.e. the robot would move on its

own in the direction u0 if the user gave an input of c = 0). Instead, u0 = 0 can be enforced by adding

µbehaviour-basedµbehaviour-based
T to the covariance Σbehaviour-based before calculating the eigendecomposition

(see [V]):

D = eigen1:m (S) , u0 = 0, S = Σbehaviour-based + µbehaviour-basedµbehaviour-based
T . (16)

The result is shown in Figure 26 as a bold ellipse, with the primary DoF (i.e. the largest eigenvalue of S

in Equation 16) shown as an arrow. Overall, the figure shows a simplified example of the mathematical

combination of three behaviours using sigma points.

This procedure allows for simple implementation and integration of an arbitrary number of behaviours,

with an associated statistical generation of usable adaptive DoFs. The full software control loop can be

found in the appendix Figure 34.

5.2.2. Behaviour Design

For this initial realisation, behaviours were developed focussing on the generalised interaction with grasped

objects. This very common task of the arm is non-trivial and provides good opportunities for improvement

of the user experience. Especially approaching and grasping objects are reoccurring sub-tasks which could

benefit greatly from situation-aware DoFs that may, for example, lead directly to objects. In addition,

such objects implicitly introduce distinct goals for the task, whereas a task such as Scratching oneself is

structurally undefined to a degree where shared-control assistance is futile.

In contrast to the neural network-generated paths (see Figure 15 of Section 5.1), the behaviour

combination based on sigma points allows the representation of directed DoFs. This is possible due to the

incorporation of the distribution’s expected value. For the neural network, the sign of paths (Y ) were lost

due to the outer product operation of the covariance calculation, as well as not being taken into account

with the Mahalanobis loss. In Figure 26, the fictitious Simple Forward and Approach Home behaviours

encode such directed (signed) DoFs by having Qb not centred at zero. The Look Around -behaviour in the

same figure however solely displays a single undirected (unsigned) DoF.

With these object-related tasks in mind, 7 behaviours were introduced; 6 of which are fairly simple and

model some fundamentals of robotic interaction, whereas the last is most dependent on the camera input

and provides object-associated individual Approach-behaviours. An overview of the baseline behaviours is

given below. For a detailed description, including behaviour-specific sigma point definitions, see [V]:

• Forward : As the most basic interaction, users often aim to command the robot to continue its

trajectory, i.e. follow the heading currently defined by the gripper’s orientation, either forwards

or backwards. This constant behaviour therefore provides specifically that DoF, however slightly

weighted towards moving forwards.

• Look Around : In alignment with the previous behaviour, this represents a user’s desire for a rotation

around the world’s vertical axis. Without a preference of direction, the generated DoF allows to

orient the gripper roughly towards objects, thereby implicitly paving the way for Forward to be

applied, while also moving task-relevant objects into the camera’s field of view.

• Rotate Upright : During regular operation and task execution, the robot’s end effector will often reach

unexpected kinematic-induced orientations. This can cause confusion in users and often hinders

further operation (‘Why does it point there?’). The Rotate Upright behaviour therefore encompasses

a directed DoF which provides an incentive for the end effector to either remain upright or return

to this state. Its likeliness is therefore scaled with the inclination angle.
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• Approach Home: Similar to remaining upright, users often find their robotic arm outstretched

or in unusable positions. Here, a return to a predefined home-position generally helps both the

user and the robot to more easily continue their task. In addition, the home position might also

be a valid retrieval pose for grasped objects, e.g. when the home pose is above the wheelchair’s

table. For such situations, the Approach Home behaviour provides two directed DoFs, one for the

translational approach to the home pose and one for orienting towards. The likeliness of either are

scaled dependent on the distance and orientation to the goal.

• Grasp: As the only baseline behaviour to utilise external sensory input, the Grasp behaviour accesses

the wrist-mounted depth camera and provides a finger closing-DoF. The likeliness of this behaviour

is scaled by the number of pixels indicating graspable objects between the fingers, effectively mapping

the likeliness of closing the fingers with the likeliness of a graspable object in place.

• Liftoff : Conceptually close to an extension to the Grasp-behaviour, this behaviour describes an

increased probability to vertically lift the gripper after any grasping action has taken place. This

embeds the natural lifting of a recently grasped object to avoid scraping, as well as retrieval after

releasing it later on.

The Approach Object behaviour differs from the baseline behaviours by extensively processing the camera

data for graspable objects and basically creating child-behaviours for the approach of each detected object

instance over time. To do this, a Segment Anything Model [35, 62] is used, which isolates generic object

segments in arbitrary colour images. In order not to lose generality, the model was applied off-the-shelf

without retraining it to specific scenarios or objects. Instead, the generated image segments were used in

conjunction with the camera’s depth data to calculate an object’s pose and physical extent. This, coupled

with information about the object’s direct physical environment, was used to filter graspable objects. In

short, segments are considered as graspable objects, if they are within reach, have physical extents not too

small or too large for the gripper, and have sufficient chasms to its side that allow fingertips to embrace

the object. Further, the likeliness of the user attempting to reach each such object is estimated based on

the relative angle of the gripper to the object and its distance.

As such, the behaviour has no instance detection or tracking. Instead, it continuously accesses the

video stream and generates new targets to be persistently stored in a global map. By decreasing the

probabilities of stored targets over time, this setup allows for a global perception of the environment (e.g.

remembering an object no longer directly in the line of sight) with directly embedded uncertainties of

outdated data.

In alignment with the Approaching Home behaviour, the generic Approach Object behaviour also

generates 2 isolated DoFs for each object: translational approach and reorientation towards an object.

This follows the assumption that users would rather sequentially orient towards an object and draw near

than control the interweaving operation of approaching with superimposed rotation. The likeliness of each

object and associated DoFs is calculated on the fly based on its remaining certainty in the persistent map,

and distance and orientation of the gripper towards the target. This generates a selection dynamic for the

user.

Behaviour Synergy in Shared Control In application, the adaptive DoFs generated from probabilistically

fusing the behaviours (see Figure 26), behaves just as described in Section 4. As long as no graspable

objects are detected or their relative likeliness is too low, the baseline behaviours take command. Working

together, they assure the user to be able to scan the environment (Look Around) and approach interesting

areas (Forward), whilst either avoiding cumbersome poses or being able to swiftly unravel them (Rotate

Upright, Approach Home). The latter is automatically infused into the adaptive DoFs based on their

situational relevance, i.e. likeliness.
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Once graspable objects come into the mix and are sufficiently likely, the Approach Object behaviour

will be a major factor of the mixture distribution. For example, if the gripper is relatively far away

from targets and/or the targets are evenly spaced in view (e.g. t0 in Figure 12 on page 18), the fusion of

Forward and the translational component of the Approach Object ’s sub-behaviours, will produce a DoF in

the general direction of the set of targets. This only changes once the robot is closer to the targets (t1 in

Figure 12), as the necessity to select a target will then outweigh the general translational approach. Now,

either the rotational selection component or orthogonal translational-distinction will define the adaptive

DoFs. Once a selection is made (either by closing the distance or rotating towards a distinct object),

the associated sub-behaviour will rise in probability, thereby provide a clear DoF to the target (t2 in

Figure 12).

The more the object extends between the fingers, the more will the Grasp behaviour rise in likelihood

for the user to choose. Finally, the Liftoff behaviour resolves the situation after grasping by removing

the grasped object from the environment, possibly fused with either retrieving towards home (Approach

Home) or reaching a stable state (e.g. with Rotate Upright).

A video of the interaction synergy can be found online29 focussing on user interaction and the Approach

Object behaviour. In this, the interaction of object segmentation, graspability analysis, and UI is shown

with sub-videos.

5.2.3. Evaluations

The adaptive DoF control utilizing probabilistically combined behaviours was evaluated in 2 separate

studies: A preliminary technical user study (Study 8) with N8 = 18 able-bodied participants in a lab

environment [V], followed by a more extensive evaluation (Study 3) with N3 = 24 individuals from the

target group conducted at a trade fair [VI].

Figure 27: Study Apparatus at the Trade Fair of Study 3, illustrating the placement of user, table, and
shelf, as well as the UI visualised on the smart glasses (top left). Reused from [VI] © 2024
IEEE

The ADL Shopping for Groceries (see Section 3.1) was selected as example scenario for both studies,

as it is highly relevant to users and sufficiently complex to expose advantages and limitations of the

control. In addition, fixed object poses allowing the task to be neatly defined and thus repeatable allowed

for a clean study procedure, whereas the absence of physical human-robot contact minimised risks to

participants, especially during the trade fair-based study.

Figure 27 provides an over-the-shoulder view of the study environment at the trade fair. As the destined

participants (wheelchair users with limited upper limb mobility) came with their own wheelchairs, a

29Video of behaviour-based adaptive DoFs interaction available at https://www.informatik.uni-bremen.de/agebv/

DoF-Adaptiv#Behaviour_Based_Control, last visited 10th December 2024
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transfer into the demonstrator was not feasible. This, coupled with safety precautions, led to the robot

being mounted on a small table, similar to the setup in Section 3. During the study, the participants sat

on one side of the table, with a shelf on the other. The task at hand involved retrieving two objects from

the shelf (a book and a package of cereals in Figure 27) and placing them in a basket on the table. The

preliminary lab study followed a very similar setup only with the able-bodied participants sitting on a

regular chair.

The user interface is build around the smart glasses worn by the participants (see Section 4.1). Here,

the glasses visualise the currently active adaptive DoFs as simplified arrows in their overlay (see top left

add-in in Figure 27), with the currently selected direction in the centre and two alternatives to the sides.

Once the system suggests a more likely alternative, this is emphasised in the UI with a yellow border

and the keyword New (see right icon in the image). As discussed in Section 4.2, the user can, at any

time, choose to either stick to their currently selected DoF (i.e. the icon at the centre) or switch to an

alternative. The actual control input is aligned with the pre-existing munevo DRIVE wheelchair control

such that tilting the head right and left steers the robot along the selected DoF (positive and negative),

whereas sudden head-nods are used to navigate the menu.

The complete procedure of the study, including the scenario, user head motions, and UI-overlay can be

seen in the media attachment video recorded in the lab-environment30.

Preliminary Technical Study The preliminary study (Study 8) compared the adaptive DoF control

with a classic control using the same interface (i.e. the smart glasses with 7 predefined and unchanging

cardinal DoFs). Following a within-subjects design, each user performed the task with both controls in a

random order, followed by a short qualitative questionnaire. The results showed a slight decrease of task

completion times when using the adaptive control, coupled with a very clear reduction in the number of

mode switches.

Subjectively, 14 participants preferred the adaptive control, while only 4 selected the classic alternative.

This was partially ascribed to the adaptive control being perceived easier, though requiring familiarization,

and more compact due to fewer options in the UI at most times. In addition, participants explicitly

praised diagonal DoFs, which provided motion options to directly approach a target. On the other side,

some users struggled with understanding the arrow-representation of DoFs, therefore deeming the fixed

directions as a clear advantage of the classic control. In this case, they were able to learn the order of

operation by heart and simply operate the arm from memory alone. This aligns with similar feedback

given for preference of the 3D mouse in Section 3. For more details, see the associated publication at [V].

Trade Fair Study with Target Group This technical success led to the follow-up study with the target

population, which was conducted during the REHACARE trade fair31. The experiences and success of

the trade fair-located Study 1 (see Section 3) showed that such a location offers an extremely realistic

environment and large target population, thus allowing an evaluation to be very close to an in-the-wild-

study, even while restricting participants entirely to people with limited upper limb mobility. This user

group is usually very difficult to sample, in part due to full schedules and limited mobility. In this case

however, the trade fair offered unique opportunities by providing a large intrinsic motivation for the target

group to visit, thus resulting in a largely increased localised population to sample from.

As the control’s general viability was shown in the previous study, this second evaluation focussed on

verifying results with the actual target group, as well as assessing the generalisability of the control to

different interfaces. For this, the study followed a between-subject design, recording 81 trials over the

30Video of the behaviour-based adaptive control in the lab study setting is available at https://doi.org/10.1145/3652037.
3652071, last visited 10th December 2024

31REHACARE trade fair. https://www.rehacare.de/, last visited 10th December 2024
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N3 = 24 participants with varying motor impairments using 3 input devices. The latter are shown in

Figure 28 and included the smart glasses (a), a custom-built joystick (b), and assistive mobile buttons (c)

that could be positioned on arbitrary positions to adapt to user capabilities. These devices were selected

to compare the highly specialised smart glasses with more established joystick and button interfaces, as

well as to examine the impact of non-continuous control inputs with the buttons.

(a) (b) (c)

Figure 28: Input Devices used at the Trade Fair of Study 3: (a) Smart Glasses [42], (b) custom-built
Joystick, and (c) Assistive Buttons. Reused from [VI] © 2024 IEEE

Conducted in the previously described environment shown in Figure 27, the users were given a trial-based

coaching with assistance from the study administrator with either the glasses or the joystick in order

to prepare for 1 to 4 measured trials with this device. Based on personal capabilities, 16 subjects also

followed this up with a single trial using the assistive buttons for comparison. At the end, each user was

interviewed regarding their experiences.

In terms of task completion times and mode switches, the results showed no significant differences

between the input devices. Yet, all participants successfully completed the task, with most of them

remarking positively on the adaptive control. This shows that the use of an adaptive DoFs-control is not

only limited to the specialised case of smart glasses, but can actually improve various input devices [VI].

A thematic content analysis of user comments and interviews revealed high acceptance after a short

period of acclimatisation. Here, most users initially did not find the control to be intuitive. However,

this quickly changed to becoming easier and more successful once ‘the concept was understood’ [VI]. In

part, these initial complications were due to the unaccustomed use of smart glasses. Two participants

with prior experience with smart glasses had the least start-up difficulties. Similarly, participants with

prior experiences controlling an assistive robot arm with classic interfaces had to, in part, unlearn coping

mechanisms. For example, these users initially controlled one axis after another to reach a target, instead

of using suggested directed diagonal DoFs.

Performing such a research-oriented study of a prototypical assistive device in a trade fair environment

is highly unusual and came with various unforeseen situations and complications. However, the easy

access to a relatively wide range of participants from this diverse user group greatly improved their

recruitment and consequently reliability of the results. This was further discussed as an in depth analysis

and was published separately [XIII], thus providing the research community with the associated special

requirements and limitations of this unconventional approach, accompanied by an overview of lessons

learned.

Overall, all users expressed high hopes for the adaptive control, each of them assuming to becoming only

faster with more time. In addition, they also explicitly praised the implemented degree of automation, as

it balanced suggestions with manual control [VI].
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6. Conclusion

This thesis delved deep into user-controlled personal assistive robotics. With the purpose of empowering

people living with limited upper limb mobility, it steered away from unnecessarily complex and artificially

theoretical constructs, but instead focussed on concepts and innovations achievable by the industry within

a reasonable time frame. As such, this thesis does not introduce new mechanical or electrical designs,

but mostly extends pre-existing machines (e.g. the Jaco) with intelligent software and context-bridging

interfaces. During this process, each associated technological step successfully followed a user-centric

participatory design, keeping care-receivers in the loop and developments closely aligned with the nursing

community. Hopefully, this paves the way for the technology to swiftly reach affected users.

Especially novel interaction designs have the opportunity to vastly improve the users’ lives by providing

them with more autonomy and a possibly more self-determined life. However, a fine line needs to be

considered in this setting, as developers tend to over-achieve and aim too high in automating operations.

While this minimises the burden laid upon users, it also reduces their opportunities to make decisions

themselves. As shown in the analysis of requested autonomy, no on-size-fits-all system can be installed. In

most cases, assistance is highly valued, however always linked to the customisable fallback operation of

manual control.

However, even in this seemingly most basic interaction variant of manual control, the analysis of

contemporary control interfaces clearly showed the users swaying from the seemingly simpler manufacturer-

provided joystick to more complex devices. Here, users expressed their eagerness to train with a more

difficult, but also more capable system and gather experience over time. More skilful interfaces could

therefore bridge a huge gap by reducing unnecessarily patronizing simplifications and vastly expanding

user-robot capabilities. This should be understood as a shout-out to the industry to provide users with

technological opportunities to grow alongside their assistive devices.

A realisation of such an opportunity is introduced as the Adaptive DoF Control, which itself could be

made market-ready in a fairly short amount of time, as its underlying control synergy completely avoids

possibly ambiguous and unsafe autonomous operation and merely extends user-robot capabilities, thereby

maintaining sustainable fallback options. Hereby, the concept keeps the users in complete control while

enabling them to operate intricate situations with adaptively changing DoFs.

As the ability to learn operations by heart was a major selling point for participants during the analysis

of contemporary control interfaces, the lack of it is possibly the largest limitation of this situation-adaptive

low-DoFs control. However, this ability directly correlates to the number of input DoFs to be skilfully

controlled by the user, as only high-dimensional input devices allow this form of interaction by creating

an immediate mapping of input DoFs to output DoFs. In turn, they demand a level of dexterity and

physical capabilities not met by all users. This is where the adaptive DoF control explicitly shines for

low-dimensional input devices by allowing complex manoeuvring with simple control interfaces.

While only a simplified proof of concept of an end-to-end trained generation of adaptive DoF was

achieved, the behaviour-based implementation was capable to be evaluated in multiple studies, including

extensive testing by the target study in a semi-unstructured environment. This showed remarkable success,

with a clear reduction of mode switches and subjective task load of the users, when compared to a classic

control. Possibly even more important, affected people explicitly expressed contentment with this control,

with bright prospects of a more independent self-determined life.
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6.1. Future Work

At this point, two distinct paths of further developments are possible: One, probably preferred by

the nursing community, sees a rapid system integration and introduction to the market of presented

technologies. For this, simple and standardised interfaces to independently connect (custom) input devices

can pave the way for more self-determined manual interactions. Just like the rest of society, users of

assistive robotics grow more and more accustomed to computers and machines. These systems should

reflect this by allowing users to choose their interaction preferences.

For the adaptive DoF control, the shortest path to a market introduction probably utilises the behaviour-

based approach. This was already shown to be functional even with minimal set of behaviours and is easy

to expand. Also, as the control concept itself induces basically no additional risks, a public roll-out as

add-on to a robot should require minimal effort. However, for a future-proof product, the set of behaviours

needs to be expandable, both by manufacturers and users. Overall, user-piloted assistive robotics could

benefit greatly from a public marketplace (app-store-esque) to share such and similar innovations. If not

limited to be used by manufacturers, this could also be a share-point for the community, which often

reports on developing customised solutions for activities of daily living. We have this for games on our

smartphones, why not for life-changing devices with so much room for improvement?

The second path of future work deals with further improvements of the adaptive DoF control and

the associated scientifically evaluation. Here, new behaviours can be devised which further extend the

capabilities. For example, the presented Approach Object behaviour could be extended or replaced by

building upon the recently introduced Grasp Anything system [43]. Also, reincorporating a deep learning

component could be useful to allow online learning. This could adjust behaviours user-dependently over

time and learn preferences and habits. Further, it might be fruitful to assess combining the control

concepts of adaptive DoFs with that of latent action spaces [39].

The largest scientific value could however be gained by a series of long-term testing. Even though this

thesis evaluated the adaptive control both in lab setting and the semi-unstructured environment of a

trade fair, an extensive study in the real world is still missing. Preferably iteratively, i.e. allowing for the

expansion of capabilities adjusting to user requirements at given points in time, this could be used to gain

major insights into the control’s actual usability and limitations in everyday life.
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of the DoF-Adaptiv project. I was involved in the participatory workshops and subsequent

development of application scenarios.

[XIII] Annalies Baumeister, Felix Ferdinand Goldau, Max Pascher, Jens Gerken, Udo Frese and

Patrizia Tolle. Evaluating Assistive Technologies on a Trade Fair. Methodological Overview and

Lessons Learned. arXiv. Reviewed submission planned. 2024. 10.48550/arXiv.2408.10933. url:

https://arxiv.org/abs/2408.10933 (visited on 2024/08/21).

My Contribution: 27.5%

Based on the studies in [XI, VI], this work discusses the opportunities gained by conducting

evaluation studies on a trade fair as well as their implications. I was heavily involved in organising

the studies, conducting both of them, and evaluating the lessons learned.
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und darüber hinaus – Intelligente Umgebungen, smarte Services und Künstliche Intelligenz in der

Medizin für den Menschen’. In: Künstliche Intelligenz im Gesundheitswesen: Entwicklungen, Beis-

piele und Perspektiven. Ed. by Mario A. Pfannstiel. Wiesbaden: Springer Fachmedien Wiesbaden,

2022, pp. 835–850. isbn: 978-3-658-33597-7. 10.1007/978-3-658-33597-7̇40.
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Appendix A List of Mathematical Symbols

b A single behaviour describing an elementary operation

B Set of behaviours (b1, b2, . . . )

c ∈ Rm User input

D ∈ Rn×m Robot control mode as set of DoFs

D̂ ∈ Rn×n Set of modes, Complete set of DoFs

ei ∈ Rn Normalised eigenvector (∥e∥2 = 1) generated by the AI’s PCA

Ef Set of the first f predicted eigenvectors and eigenvalues

f ∈ N Number of DoFs used in the PoM

G RV describing which behaviour the user desires given the situation z

hb Distribution of a behaviour b’s RV of desired motion Vb

k ∈ N Number of sample paths Y generated by the deep learning backbone

m ∈ N Number of DoFs of an input device

n ∈ N Number of DoFs of a controlled robot

N i ∈ N Number of participants in Study i

Qb Set of sigma points in behaviour b

S Function S (Q,µ) calculating the general covariance of a set of sigma points

Q with defined reference point µ

ti ∈ R Point in time of Figure 12

u ∈ Rn Control output sent to the robot

u0 ∈ Rn Baseline control output sent to the robot if c = 0

U RV representing the n-dimensional direction of robot motion desired by

the user

vi ∈ R Eigenvector-associated eigenvalue generated by the deep learning-head’s

PCA, with
n∑︁

i=1

vi = 1

Vb RV describing the direction of motion required by the user to perform

the behaviour b’s underlying operation in the current situation given the

desired behaviour

yi ∈ Rn One of k sample paths (Y ) generated by the deep learning backbone

Y ∈ Rn×k Set of sample paths generated by the deep learning backbone

z Sensor data representing the current situation

Z RV describing the current situation as measured by the systems sensors

αb ∈ R Scaling factor of the mixture mode of behaviour b

µb ∈ Rn Mean of a behaviour b’s normal distribution hb

µbehaviour-based ∈ Rn Mean of U |Z = z modelled as a mixture distribution

µend-to-end ∈ Rn Mean of U |Z = z modelled as a normal distribution

Σb ∈ Rn×n Covariance of a behaviour b’s normal distribution hb

Σbehaviour-based ∈ Rn×n Covariance of U |Z = z modelled as a mixture distribution

Σend-to-end ∈ Rn×n Covariance of U |Z = z modelled as a normal distribution
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Appendix B Button Mappings and Control Overviews

This section contains cheat sheets of control interfaces used in the AdaMeKoR project presented in

Section 3:

Rotation Mode Finger ModeTranslation Mode

Tilt to move 
forwards / back

Tilt to rotate up 
/ down (pitch)

Twist to roll

Close 2 fingers

Toggle Translation 
/ Rotation Mode

Toggle Translation 
/ Rotation Mode

Enter Finger 
Mode

Tilt to rotate 
left / right (yaw) Close all 

fingers
Open all 
fingers

Tilt to move 
sideways

Twist to move 
down / up

Jaco Control

Figure 29: Control Interface Cheat Sheet: Kinova Joystick

Figure 30: Control Interface Cheat Sheet: Gamepad
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Figure 31: Control Interface Cheat Sheet: 3D Mouse

… …… …

: „Computer, sag dem Arm … “

… schließe die Hand … öffne die Hand … 
… 
… 
… 

… 

… 

Figure 32: Control Interface Cheat Sheet: Voice Control Interface (German)
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Appendix C Training Graphs for 3D

0 2 4 6 8 10

Approaching Block
Grasping Block

Retrieving Block
Let Go of the Block

Pushing Block
Approaching Handle

Grasping Handle
Pulling Door

Let Go of the Handle
Pressing the Handle down

Pushing Door
Approaching Fork

Grasping Fork
Approaching Food

Grapsing Food
Eating

Retrieving Fork
Let Go of the Fork
Approaching Cup

Grasping Cup
Drinking

Retrieving Cup
Let Go of the Cup
Approaching Plate

Approaching Microwave Door
Grasping Microwave Door
Pulling Microwave Door

Let Go of the Microwave Door
Pushing Microwave Door

Grasping Plate
Retrieving Plate

Let Go of the Plate
Closing Microwave Door

Approaching Candle
Grasping Candle

Retrieving Candle to Wheelchair Table
Let Go of the Candle

Approaching Tea
Grasping Tea

Retrieving Tea to Wheelchair Table
Let Go of the Tea

Approaching Bottle
Grasping Bottle

Retrieving Bottle to Wheelchair Table
Let Go of the Bottle
Approaching Book

Grasping Book
Retrieving Book to Wheelchair Table

Let Go of the Book
Approaching Milk Carton

Grasping Milk Carton
Retrieving Milk Carton to Wheelchair Table

Let Go of the Milk Carton
Aligning Cup
Filling Cup

Approaching Cap
Grasping Cap

Retrieving Cap
Let Go of the Cap

Pushing Plate
Pushing Fork

Retrieving Spoon
Approaching Spoon

Grasping Spoon
Retrieving Bottle

Let Go of the Spoon
Retrieving Milk Carton to Basket

Retrieving Candle to Basket
Retrieving Bottle to Basket

Retrieving Tea to Basket
Retrieving Book to Basket

Aligning Bottle
Retrieving Milk Carton to Table

Retrieving Bottle to Table
Retrieving Tea to Table

Retrieving Candle to Table
Retrieving Book to Table
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Figure 33: Mean Mahalanobis-Loss per Recording and Action for Test and Training Data
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Appendix D Behaviour Control Loop

Behaviours B

PCA

User
Mode

Selection

Control

Signal

× Robot

Sensors
Camera

Robot State
. . .

+

S (Q, 0) D̂ (z) D uz

c

b2

b1

b0

. . .

Qb2

Qb1

Qb0

Figure 34: Behaviour-based Software Control Loop: Based on the current situation z, the set of behaviours
B generates sigma points Qb, accumulated to a probability distribution using S (Q,µ) (see
Equation 16). The user controls the robot along axes of the latter’s principal components.
Adapted from [V]
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The Importance of Par琀椀cipatory Design for the Development of Assis琀椀ve Robo琀椀c Arms. 
Ini琀椀al Approaches and Experiences in the Research Projects MobILe and DoF-Adap琀椀v
Annalies Baumeister, Elizaveta Gardo, Patrizia Tolle, Barbara Klein, Max Pascher, 

Jens Gerken, Felix Goldau, Yashaswini Shivashankar, Udo Frese

DOI: 10.48718/8p7x-cw14

Abstract
This Ar琀椀cle introduces two research projects towards assis琀椀ve robo琀椀c arms for people with severe body im-

pairments. Both projects aim to develop new control and interac琀椀on designs to promote accessibility and a 
be琀琀er performance for people with func琀椀onal losses in all four extremi琀椀es, e.g. due to quadriplegic or mul琀椀ple 
sclerosis. The project MobILe concentrates on using a robo琀椀c arm as drinking aid and controlling it with smart 
glasses, eye-tracking and augmented reality. A user oriented development process with par琀椀cipatory methods 
were pursued which brought new knowledge about the life and care situa琀椀on of the future target group and 
the requirements a robo琀椀c drinking aid needs to meet. As a consequence the new project DoF-Adap琀椀v follows 
an even more par琀椀cipatory approach, including the future target group, their family and professional caregivers 
from the beginning into decision making and development processes within the project. DoF-Adap琀椀v aims to 
simplify the control modali琀椀es of assis琀椀ve robo琀椀c arms to enhance the usability of the robo琀椀c arm for ac琀椀vi琀椀es 
of daily living. To decide on exemplary ac琀椀vi琀椀es, like ea琀椀ng or open a door, the future target group, their family 
and professional caregivers are included in the decision making process. Furthermore all relevant stakeholders 
will be included in the inves琀椀ga琀椀on of ethical, legal and social implica琀椀ons as well as the iden琀椀昀椀ca琀椀on of poten-

琀椀al risks.  This ar琀椀cle will show the importance of the par琀椀cipatory design for the development and research 
process in MobILe and DoF-Adap琀椀v.  

Keywords: Assis琀椀ve robo琀椀cs, Assisted Living Technologies, Par琀椀cipatory Design, Human-centered Design, User 
Acceptance, Risk Management  

Assis琀椀ve Robo琀椀c Arms for a Self-determi-
ned Life
At the end of 2019, the German Federal Sta琀椀s琀椀cal 
O昀케ce counted 7.9 million people with disa-bili琀椀es. 
Thereof 11.2% had func琀椀onal losses in arms and/
or legs and 10.4% in spine and torso. 7.6 million 
people with severe disabili琀椀es lived in private hou-

seholds with their families, part-ners or alone (Sta-

琀椀s琀椀sches Bundesamt, 2020a + 2020b). As part of 
the German Spinal Cord Injury Survey (GerSCI) in 
2017, 1,479 people with spinal cord injuries were 
ques琀椀oned about their life situa琀椀on, how they ex-

periences living with a spinal cord injury and what 

kind of issues they were dealing with. Results to-

wards daily ac琀椀vi琀椀es and mobility showed that 
running an own household was viewed as extreme-

ly problema琀椀c by 40.7% of the respondents. Rated 
as very or extremely problema琀椀c were picking up 
small objects or opening containers (31.2%) and 
com-ple琀椀ng everyday tasks (29.1%). Furthermore, 
41% of the respondents said that they could open 
heavy doors only with some or great di昀케cul琀椀es 
and 18.3% were unable to open heavy doors at all. 
The authors state that the descrip琀椀ve sta琀椀s琀椀cal re-
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sults will be followed by qualita琀椀ve studies and in-
depth analyses (Bökel et al., 2019, 22f.; 41).

Assis琀椀ve robo琀椀c arms could be a solu琀椀on to ena-

ble people with severe body impairment to per-
form ac琀椀vi琀椀es of daily living independently. Cur-
rently, the online-Portal “rehadat-Hilfsmi琀琀el.de” 
lists three assis琀椀ve robo琀椀c arms on the German 
market, JACO from Kinova inc., iArm from Assis琀椀ve 
Innova琀椀ons bv. and BATEO from EXXOMOVE UG. 
All robo琀椀c arms are mounted on an electric wheel-
chair and steered with the wheelchair controller. 
However, there are s琀椀ll some challenges. In case of 
func琀椀onal losses in hands and arms, steering with 
a special controller is possible, but has its limits. 
Opera琀椀ng a robo琀椀c arm with a chin or mouth con-

troller and thus ea琀椀ng or drinking, for example, are 
mutually exclusive. Another di昀케culty is the neces-
sity to constantly switch between di昀昀erent modes 
of movement of the robo琀椀c arm, like up/down and 
le昀琀/right, while performing a task.

The research projects MobILe and DoF-Adap琀椀v 
presented in this ar琀椀cle deal with new approaches 
to the above-men琀椀oned challenges. Furthermo-

re, ethical, social and legal implica琀椀ons (ELSI) and 

ques琀椀ons of risk and quality management are in-

ves琀椀gated. In the spirit of Responsible Research 
and Innova琀椀on (see Owen, S琀椀lgoe et al., 2013), the 
par琀椀cipa琀椀on of the future target group was or is 
being pursued in both projects. Against this back-

drop, this ar琀椀cle is intended to clarify the import-
ance of par琀椀cipatory approaches or par琀椀cipa琀椀on 
in the research process and technology develop-

ment for research in the 昀椀eld of assis琀椀ve robo琀椀c 
arms for people with severe physical limita琀椀ons.

Inves琀椀ga琀椀ng the Needs and Wishes of the 
User in MobILe
How could it be feasible to control and use a semi-
autonomous robo琀椀c arm as a drinking aid, if using 
a joys琀椀ck is not an op琀椀on, due to func琀椀onal los-

ses in all four extremi琀椀es? The aim of the MobILe 
project was to research and implement basic skills 
with and without direct physical contact between 
robots and humans. For robot control in a three-
dimensional space, the use of head and eye move-

ments as well as a combina琀椀on of mo琀椀on sensors 
and glasses with an eye tracker and electrooculo-

graphy was inves琀椀gated. For the interac琀椀on bet-
ween the robot and the human, augmented reality 

Table 1: Fact sheet MobILe (authors 昀椀gure)
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(e.g., in the form of visual representa琀椀ons of in-

tended ac琀椀ons by the robot) and a visual concept 
were developed. A safety system with redundan-

cies ensures func琀椀onal reliability. To ensure that 
the development of the control and interac琀椀on 
modali琀椀es meet the future users’ needs and ac-

ceptance, a user-centred design strategy was im-

plemented throughout the research and develop-

ment process.

An Ethnographic/Small Data Analysis
At the beginning of the project an ethnographic/
small data analysis with 15 persons of the future 
target group was conducted in Germany. Eleven 
male and four females took part in the survey. The 
diagnoses were spinal cord injury (10), locked-in-
syndrome (2), mul琀椀ple sclerosis (1), inclusion body 
myosi琀椀s (1) and arthrogryposis (1). Par琀椀cipants 
were visited at home, where in-terviews and par琀椀-

cipatory observa琀椀ons of food and beverage intake 
took place. 

The observa琀椀ons were documented with videos 

and photos. The interviews and videos were tran-

scribed and the transcripts, videos and photos 
were analysed following the qualita琀椀ve content 
analysis approach by Mayring (2015), the qualita-

琀椀ve hermeneu琀椀cal approach from social sciences 
by Reichertz & Englert (2011) and the photo ana-

lysis by Pilarczyk & Mietzner (2000). The aim was 
to gain a deeper insight into the life situa琀椀on of 
the par琀椀cipants in order to work out aspects that 
promote acceptance and to develop user-centred 
recommenda琀椀ons for the technical development.

Demographic Data, Life and Care Situa琀椀on 

The age of the par琀椀cipants varied between 18 and 
62 years and was distributed rela琀椀vely evenly. The 
diagnoses or the accident events ranged from 2 to 
35 years ago at the 琀椀me of the survey. The only 
excep琀椀on was in a case with congenital physical 

impairment. Around two-thirds of the par琀椀cipants 
have been living with a physical impairment for at 
least ten years or longer. However, no signi昀椀cant 
di昀昀erences can be derived from the response be-

haviour in the interviews between par琀椀cipants 
who have been living with their impairment for de-

cades and those who have obtained their physical 
impairment more recently. Experiences with assis-

琀椀ve robots or technologies seem to be less depen-

dent on the dura琀椀on of the impairment than much 
more on one‘s own interests or accessibility.

All par琀椀cipants stated that they are ac琀椀ve and like 
to go out as much as possible. Some have con-

verted cars that the caregivers drive. Most of the 
par琀椀cipants use an electric wheelchair (ten par琀椀-

cipants). Others prefer ac琀椀ve wheelchairs (three 
par琀椀cipants) or use push wheelchairs (three par琀椀-

cipants). The par琀椀cipants live in accessible houses 
(six par琀椀cipants) and in accessible or par琀椀ally ac-

cessible apartments (nine par琀椀cipants). Seven par-
琀椀cipants live alone, three live with their parents, 
three with a wife/husband or partner (in one case 
with a child under 18 years) and one par琀椀cipant 
lives with one child over 18 years. Caregiving rela-

琀椀ves exist in eight cases in which the par琀椀cipants 
live with their rela琀椀ves, whereby the extent of the 
care provided varies. In seven of the eight cases, 
nursing services take on certain aspects of nursing 
(e.g., catheters or showers). In one case, assistants 
also support the par琀椀cipant and his rela琀椀ves. Par-
琀椀cipants who are not cared for by rela琀椀ves o昀琀en 
use both nursing services and assistants (昀椀ve par琀椀-

cipants). Only in two cases are par琀椀cipants suppor-
ted exclusively by a nursing service or assistants. 

The daily structure is characterized by 昀椀xed 琀椀mes 
of basic care (e.g., the morning toilet), rela琀椀vely 
昀椀xed/regular meal琀椀mes, regular therapies and 
琀椀mes of relief (pressure ulcer prophylaxis). Most 
of the 琀椀me is spent in the bedroom (bed) and li- 
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ving room (wheelchair). The amount of 琀椀me spent 
in the wheelchair varies between 8 and 14 hours a 
day. Par琀椀cipants said that they eat and drink in bed 
or while si琀�ng in a wheelchair in the living room 
or in the kitchen at a dining table. Drinking has a 
special signi昀椀cance, as both the type of beverage 
(s琀椀ll water, tea) and the amount consumed are 
par琀椀cularly important for health and general well-
being. The par琀椀cipants o昀琀en drink large quan琀椀琀椀es 
in a row and preferably from large glasses or drin-

king bo琀琀les. For all par琀椀cipants, drinking is linked 
to the aspects of autonomy and privacy. If they did 
not have to ask for help for every sip, but could 
drink independently, they would be able to spend 
several hours a day alone again. Always having to 
have someone around for assistance is perceived 
as exhaus琀椀ng.

The Users Perspec琀椀ve Towards an Assis琀椀ve Robo-

琀椀c Arm as Drinking Aid

The analysis of the interviews and observa琀椀ons 
showed certain aspects that can in昀氀uence the ac-

ceptance and use of a robo琀椀c arm as a drinking 
aid. Currently, the above men琀椀oned assis琀椀ve ro-

bo琀椀c arms can only be used while mounted on an 
electric wheelchair. However, some par琀椀c-ipants 
cannot or do not want to use an electric wheel-
chair. Par琀椀cipants would also like to use the robot 
while lying in their bed and would prefer a solu琀椀on 
that enables them to use the robot independently. 
Most par琀椀cipants are cared for 24/7 by a mix of ca-

regiving rela琀椀ves, nursing services and assistants, 
which means, that di昀昀erent people are interac琀椀ng 
directly or indirectly with the robot. Therefore, 
par琀椀cipants wish for an easy and intui琀椀ve con-

trol and interac琀椀on design that does not require 
too much explaining or a long training period. It 
should also be safe to use, even if other people are 
around and interac琀椀ng with the par琀椀cipant. Furt-
hermore, the robot should be robust, sturdy and 

show a high opera琀椀ng safety. Teething problems 
or safety issues would prevent par琀椀cipants to use 
the robot at all. How the robo琀椀c arm could be per-
ceived by others is important to most par琀椀cipants. 
If it is too big and “showy” and/or looks too much 
like a medical device, par琀椀cipants do not feel com-

fortable and fear s琀椀gma琀椀za琀椀on. Instead, they 
wish for an unobtrusive and elegant design, like a 
lifestyle product and as space-saving as possible. 
If the robo琀椀c arm promotes independency and 
privacy, meaning that it enables the par琀椀cipants 
to drink without addi琀椀onal help from others, the 
par琀椀cipants stated that they would use it regularly 
and would like to spend more 琀椀me on their own. 
On the other hand, par琀椀cipants would like to enjoy 
meal琀椀mes with family and friends where everyone 
can eat and drink at the same 琀椀me and communi-
ca琀椀on is not disturbed while someone takes care 
of the par琀椀cipant. A robo琀椀c aid is seen as a possib-

le solu琀椀on as long as it is not the cause for new dis-

trac琀椀on. These 昀椀ndings lead to recommenda琀椀ons 
for the development of robo琀椀c drinking and ea琀椀ng 
aids, which are currently published at INTERACT 
2021 (see Pascher/Baumeister 2021).

New Insights Through Including Caregivers 
To discuss ethical and social implica琀椀ons of a robo-

琀椀c drinking aid, three workshops with all stakehol-
ders were conducted in 2019. A total of 11 people 
with a disability, 2 caregiving parents, 4 assistants, 
2 physiotherapists and 3 industry representa琀椀ves 
took part. In addi琀椀on, all project partners joined 
the 昀椀rst workshop, too. The MEESTAR model for 
the ethical evalua琀椀on of socio-technological arran-

gements was adapted and used to evaluate ethical 
issues. All workshops were transcribed and quali-
ta琀椀vely analysed following the thema琀椀c analysis 
by Tucke琀琀 (2005, 75昀昀.). 
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Caregiving parents and assistants brought a new 
perspec琀椀ve towards the topics safety and inde-
pendence. Both par琀椀cipa琀椀ng groups viewed an 
assis琀椀ve robot as posi琀椀ve if they feel assured that 
the person they care for can be safely le昀琀 alone 
to perform a task with it. If the robot promotes a 
higher independency, it would be a relief for ca-

regivers. Assistants could use their 琀椀me more ef-
昀椀ciently and caregiving rela琀椀ves would gain more 
琀椀me for themselves. However, it also became clear  
during the discussions that it is an issue to trust in 
the safety of an assis琀椀ve robot and leave the per-
son being cared for alone with it. Especially assis-

tants said that they don’t trust the robot and asked 
what would happen, when a problem occurs? They 
do not want to risk that the person being cared for 
comes to any harm or that they cannot help them 
(fast enough), if needed. Par琀椀cipants with a disabi-
lity, on the other hand, were much more inclined 
to take risks, if only they could regain more privacy. 
Whilst par琀椀cipants with a disability say that safety 
standards in Germany are very high and they could 
call the caregivers with a mobile phone if neces-

sary, the caregivers prefer them to be in another 
room/close by and quickly available when needed. 
So there is a profound con昀氀ict of interest between 
caregivers and the person being cared for about 
gaining more privacy and autonomy. 

Lesson Learned for Further Research 
During the visits of the par琀椀cipants, some asked 
why MobILe focused on drinking and how the de-

cision was made. Although drinking was viewed as 
important, par琀椀cipants and caregivers men琀椀oned 
further ac琀椀vi琀椀es a robo琀椀c arm could help with. 
Par琀椀cipants mostly wished to pick up and manipu-

late objects or open doors. Again, in the context 
of the workshops, people with a disability, parents 
and assistants suggested more di昀昀erent ac琀椀vi琀椀es, 
like support for dressing. It seems that people with 
severe body impairments do have several unmet 
needs that an assis琀椀ve robo琀椀c arm could help with 
and that it is important to include the future tar-
get group into the decision-making before deci-
ding what ac琀椀vity the assis琀椀ve robo琀椀c arm should 
support. The inclusion of caregiving rela琀椀ves and 
assistants in the workshop made clear that it is 
necessary to recognize the whole social system of 
people with severe body impairments and to inclu-

de caregiving rela琀椀ves, nurses and assistants into 
the research project as well. The conclusion was to 
pursue a more par琀椀cipatory approach in the suc-

cession project DoF-Adap琀椀v. 

Table 2: Fact sheet DoF-Adap琀椀v (authors 昀椀gure)
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Including All Stakeholders in the Research and 
Development Process of an Assis琀椀ve Robo琀椀c 
Arm
The ongoing research project DoF-Adap琀椀v aims to 
simplify the use of assis琀椀ve robo琀椀c arms, i.e. re-

leasing the users from the necessity to switch bet-
ween the various modes of degrees of freedom 
while performing a task. A combina琀椀on of machi-
ne learning and ar琀椀昀椀cial intelligence (AI) will be 
developed in order to improve the control system. 
In contrast to automa琀椀c control, humans remain in 
control. In a user-centred design process, possibili-
琀椀es of displaying feedback are explored using data 
glasses. In a par琀椀cipatory approach, the require-

ments are raised and the system is evaluated with 
those a昀昀ected.

Par琀椀cipa琀椀ve Research, Par琀椀cipatory Approaches 
DoF-Adap琀椀v is conducted as research with peop-

le, rather than as research about or for them. This 
course of ac琀椀on is a characteris琀椀c feature of par-
琀椀cipatory research (Bergold/Thomas, 2010, 333). 
The DoF-Adap琀椀v project is guided by fundamental 
principles of par琀椀cipatory research. The following 
sec琀椀on focuses on two areas: the concept of „safe 
space“ for all par琀椀cipants during the research pro-

cess and the roles of all par琀椀cipants in decision-
making processes (von Unger, 2014, 39昀昀.; Bergold/
Thomas, 2012, 6). 

Par琀椀cipatory research can be understood as a re-

search style in which professional researchers and 
co-researchers are equally involved in the pro-

cess of knowledge construc琀椀on (Bergold/Thomas, 
2012, 2). In DoF-Adap琀椀v, two groups, the prima-

ry and secondary users of assis琀椀ve technologies, 
form the group of co-researchers. People with di-
sabili琀椀es (primary users), family caregivers, nurses, 
assistants (secondary users) collec琀椀vely contribute 
their unique perspec琀椀ves. Expressing and sharing 
their own opinions and experiences in ins琀椀tu琀椀onal 

se琀�ngs or with strangers requires a “safe space“ 
(Bergold/Thomas, 2012, 5). The “safe space“ all-
ows, for example, to have and express di昀昀erent 
opinions or to resolve con昀氀icts in a construc琀椀ve 
manner (Bergold/Thomas, 2012, 7). In addi琀椀on, a 
“safe space“ creates an opportunity for all mem-

bers of the research group to experience that each 
opinion will be heard, but will not be judged or 
even devalued by others. The “safe space“ is also 
dynamic. It has to be reestablished over and over 
again via opening communica琀椀ve spaces throug-

hout the en琀椀re research process (Bergold/Thomas 
2010, 338).

To determine whether a project ful昀椀lls the basic 
criterion for classi昀椀ca琀椀on as par琀椀cipatory re-

search, it is necessary to ask who is controlling the 
research in which phase of the project (Bergold/
Thomas, 2012a, 9). These ques琀椀ons allow to de-

termine which group of researchers (professional 
researcher or co-researcher) is involved in which 
decisions, whether the various actors are involved 
in decision-making-processes with equal rights 
in order to control and monitor the research and 
the course of the project (Bergold/Thomas, 2012, 
10f.). 
The research process in DoF-Adap琀椀v is designed 
in cycles. These cycles are based on the process 
of “Progressive Problem Solving with Ac琀椀on Re-

search” (Riel quoted in Wright et al., 2013, 147). 
Each cycle describes the re昀氀ec琀椀ng on prac琀椀ce, the 
ac琀椀ons taken, re昀氀ec琀椀ng and taking further ac琀椀on 
(Riel n.d.)

In the following, the concept of “safe space“ and 

decision-making processes used  to control and 
monitor the research process at DoF-Adap琀椀v are 
explained with a focus on the scenario develop-

ment. 

[I]

68



7

Including the Future Users Early on 
Based on the experiences in MobILe, the future 
target group in DoF-Adap琀椀v includes not only peo-

ple with a disability, but their caregiving rela琀椀ves, 
nurses and assistants, too. Futhermore, the pro-

ject aims for a more par琀椀cipatory approach that 
involves the future target group in the research 
and development process from the beginning and 
is itera琀椀ve throughout the project. Star琀椀ng with 
the development of applica琀椀on scenarios for the 
assis琀椀ve robo琀椀c arm, workshops and interviews 
were held. It was decided which ac琀椀vi琀椀es the 
robo琀椀c arm should support and which scenarios 
should be described great importance was a琀琀a-

ched to the fact that par琀椀cipants and researchers 
meet on an equal foo琀椀ng. Researches were in the 
role of listening and documen琀椀ng the par琀椀cipant’s 
thoughts and wishes, accep琀椀ng them as experts in 
their own rights. Protocols, 昀椀ndings and work-in-
process documents were shared with all par琀椀ci-
pants throughout the development process. When 
deciding on applica琀椀on scenarios, the opinion of 
the par琀椀cipants was decisive for the decision-ma-

king. Furthermore, par琀椀cipants were given the 
opportunity to discuss the details of the scenarios 
design with all researchers during a project mee-

琀椀ng. Those who couldn’t a琀琀end the mee琀椀ng were 
asked to give their view via e-mail or a one-to-one 
call with a researcher, making sure that every par-
琀椀cipant who wanted to be part of the develop-

ment process and decision-making could par琀椀ci-
pate. The transcripts, notes and protocols of the 
workshops, interviews and the project mee琀椀ng are 
currently being analysed and the par琀椀cipa琀椀ve ap-

proach will be evaluated.       

Impact of Par琀椀cipatory Approaches for Risk and 
Quality Management 
In the 昀椀eld of medical technology, there is a sepa-

rate standard for managing risks. DIN EN ISO 14971 

describes requirements and possible procedures 
with a focus on risk analysis. Risks have to be iden-

琀椀昀椀ed and assessed to determine whether they are 
jus琀椀昀椀able. Remaining residual risks must be set in 
rela琀椀on to the bene昀椀ts. In 2019, a revision of the 
risk management standard DIN EN ISO 14971 for 
medical devices was published: ISO 14971: 2019. 
The procedure has basically remained unchanged. 
However, some addi琀椀ons and explana琀椀ons have 
been introduced. Among other things, the infor-
ma琀椀on for training op琀椀on was discussed as a risk 
control measure. In addi琀椀on, the concept of bene-

昀椀t for the pa琀椀ent was further speci昀椀ed. The stan-

dard has thus moved the issue of risk-bene昀椀t ra琀椀o 
even more into focus. In the area of risk manage-

ment, the EU direc琀椀ves and EU regula琀椀ons for 
medical devices such as the MDR (Medical Device 
Regula琀椀on (MDR)) have to be taken into account 
too. The risk analysis must factor in, inter alia, the 
e昀昀ects of so昀琀ware errors, framework condi琀椀ons 
and safety-relevant func琀椀ons.

As part of a project on „Systemic risk management 
for the holis琀椀c considera琀椀on of entrepreneurial 
risks using the example of medical technology“ at 
RWTH Aachen University, some weaknesses in the 
current procedures and methods in the 昀椀eld of risk 
management in medical technology were discus-

sed and described (SysRisk). Among other things, 
the current methods are seen insu昀케cient in scope 
and depth to iden琀椀fy and assess residual risks as 
comprehensively as is necessary for risk-sensi琀椀ve 
products. In order to minimise these weak points 
in the current project, risk management is being 
expanded to include methods and procedures that 
go beyond the mandatory standards and regula琀椀-

ons.

For this reason, the current project (DoF-Adap琀椀v) 
puts a lot of emphasis on iden琀椀fying as many risks 
as possible at an early stage and introducing ap- 
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propriate measures in a 琀椀mely manner. The follo-

wing procedures and methods are used:
• Users are involved in the risk iden琀椀昀椀ca琀椀on pro-

cess from the beginning of the project.
• FMEA (Failure Mode and E昀昀ect Analysis) is 

used in the risk analysis to analyse the indivi-
dual components of the product, in par琀椀cular 
the resul琀椀ng hazards.

• The scenario technique or scenario-based risk 
analysis is used for the inves琀椀ga琀椀on and eva-

lua-琀椀on of the in昀氀uencing factors and simula-

ted scenarios.
• Prac琀椀cal conclusions for the intended area of 

applica琀椀on of the product are derived from 
the ac琀椀on-oriented error taxonomy. The ac-

琀椀on-oriented error taxonomy is based on an 
error term that can be traced back to ac琀椀on-
oriented error research (Freud, 1941, 25f.; Fre-

se, Zapf, 1991, 11f.).

Conclusions
The early involvement of the future target group 
in the research project MobILe had a deep impact 
on the further development of human-robot inter-
ac琀椀on modali琀椀es. The insight into the life and care 
situa琀椀on of people with severe body impairments 
brought 昀椀ndings towards aspects that promote a 
higher acceptance of assis琀椀ve robo琀椀c arms, all-
owed a user-centred development and new input 
for further research was gained. In the ongoing 
project DoF-Adap琀椀v, the inclusion of the future 
target group into development and decision-ma-

king processes ensures that the research project 
meets the future target group needs and will in-

crease their independence and autonomy in the 
future. In this way, both projects seek to contribu-

te to a more independent living for people with 
severe body impairments in the future.
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AI for simplifying the use of an assistive robotic arm for people with severe body impairments 
A. Baumeister, M. Pascher, Y. Shivashankar, F. Goldau, U. Frese, J. Gerken, E. Gardó, B. Klein, P. Tolle 
 
Purpose Assistive robotic arms, e.g., the Kinova JACO, aim to assist people with upper-body disabilities in 
everyday tasks and thus increase their autonomy (Brose et al. 2010; Beaudoin et al.2019). A long-term survey with 
seven JACO users showed that they were satisfied with the technology and that JACO had a positive psychosocial 
impact. Still, the users had some difficulties performing daily activities with the arm, e.g., it took them some time to 
finish a task (Beaudoin et al. 2019). Herlant et al. claim that the main problem for a user is that mode switching is 
time-consuming and tiring (Herlant et al. 2017). To tackle this issue, deep neural network(s) will be developed to 
facilitate the use of the robotic arm. A sensor-based situation recognition will be combined with an algorithm-based 
control to form an adaptive AI-based control system. The project focuses on three main aspects: 1) A neural 
network providing suggestions for movement options based on training data generated in virtual reality. 2) Exploring 
data glasses as a possibility for displaying feedback in a user-centered design process. 3) Elicitation of 
requirements, risks and ethical system evaluation using a participatory approach. Method In a first step, everyday 
scenarios that are relevant for the user, like eating and drinking (Pascher et al. 2021), were identified. Based on the 
iterative, cyclical process of action research by Riel (2020), two workshops and six interviews with people from our 
target groups were conducted to learn about their care situations and needs. Four scenarios were elaborated and 
decided on together. The simulation system consists of these scenarios along with detailed movements and 
manipulations (Kronhardt & Rübner et al. 2022). The user controls the simulated robot's hand via a VR controller. 
This makes it possible to record movements quickly, which is necessary to achieve a large training data set. Thus, 
the generated data is used for training a neural network to provide an adaptive set of controls. In the next step, a 
novel control method and possible visual cues for the DoF mappings were developed. The objective is to explore 
how the novel adaptive control method performs in a 3D environment compared to the standard mode-switch 
approach with cardinal DoF mappings and whether changes in the visual cues impact the performance of the 
adaptive control method. The participants repeatedly performed a simple pick-and-place task, controlling a virtual 
robot arm using the three control types. Results and Discussion The everyday scenarios that most correspond to 
the needs of the target group are: "eating and drinking", "open and close doors", "supermarket shelf/pick up", and 
"microwave". Simulation of these scenarios enables the user to control the robot akin to a normal hand, allowing 
more direct motions which are not influenced by the limitations of the input device and thus offer the possibility of 
quickly recording extensive data. Results show that the number of mode switches necessary to complete a simple 
pick-and-place task decreases significantly when using an adaptive control type. 
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DORMADL - Dataset of human-operated Robot Arm Motion
in Activities of Daily Living

Felix Goldau1, Yashaswini Shivashankar1, Annalies Baumeister2, Lennart Drescher1, Patrizia Tolle2, Udo Frese1

Abstract— This work presents a dataset of human-operated
robot motion to be used within the context of assistive robotics
and assorted fields, such as learning from demonstrations,
machine-learning based robot control, and activity recognition.
The data consists of individual sequences of intentional robot
motion performing a task in an environment of daily living.
There are 2 973 sequences generated in a high-resolution
simulation and 986 sequences performed in reality, totaling to
1.16 M datapoints. The data includes labels for the robot’s pose,
motion and activity. This paper also provides data augmentation
methods and a detailed dataset analysis as well as simple models
trained on the dataset as a baseline for future research.

The dataset can be downloaded free-of-charge at
https://www.kaggle.com/f371xx/dormadl.

I. INTRODUCTION

The field of assistive robotics attempts to improve the lives
of people who struggle with activities of daily living (ADLs),
by using robotic assistance. The intended users often live with
physical impairments which restrict their interaction with the
environment. Apparently simple tasks, like drinking from a
cup, moving a small object from one place to another, or even
scratching oneself can become impossible or cumbersome to
perform.

Research in this field shows a variety of individual solutions
to a lot of tasks and is designed for diverse user groups. The
common ground therein is the distinction from the typical
application environment of robotics (i.e. industry) and focus
on interaction with other people, their homes or private
lives. These ADLs refer to the “basic tasks of everyday
life, such as eating, bathing, toileting, and transferring” [1]
and are well-represented in the literature. The applications
range from custom eating utensils for users with spastics [2],
simple fetch applications controlled by pointing with a laser
pointer [3] or on a touch screen [4] for people with motion-
impairments, up to partially autonomous systems to assist
people with paraplegia with drinking using their remaining
head motion [5] or brain-computer interfaces [6].

The market already provides wheelchair-mounted robotic
arms (WMRAs) to be controlled directly by the person sitting
in the chair. This creates a great opportunity since it allows for
a mobile setup where users can interact with the environment,

*This work was supported by the German Federal Ministry of Education
and Research BMBF (Bundesministerium für Bildung und Forschung)-funded
projects DOF-Adaptiv and AdaMeKoR (FKZ 16SV8563, 16SV8534)

1 The authors are with the German Research Center for Artificial
Intelligence (DFKI)

2 The authors are with the Frankfurt University of Applied Sciences
Corresponding Author: Felix Goldau, felix.goldau@dfki.de

Fig. 1: Example images from the dataset

while also creating challenges, as most places are not designed
for a robot arm. In addition to this, the interfaces used to
control the robots limit the motion actually possible, as they
generally offer less degrees of freedom (DoFs) than the robot
is able to perform.

As this is a problem induced by the interface applied,
different input modalities have been analyzed, often targeted
to specific user groups. These concepts include both phys-
ical joystick-alternatives or additional sensors [7], as well
as computer-aided control methods such as autonomously
switching control modes [8]. More ambitious concepts apply
shared control mechanisms, where the user-controlled action,
defined by a pre-existing mode, is extended by fusing the
result with autonomous solutions [9], possibly also combining
this with custom input devices [10].

For modern data-driven approaches, it is necessary to have
data representing the desired robot motion to perform a given
task, be it for learning or evaluations. This data might also
be interesting to the field of activity or intend recognition
in order to detect patterns in the users’ behavior. However,
acquiring this data poses a chicken and egg problem, as
the desired motion often cannot be controlled with standard
interfaces: Opening a door, for example, requires pulling or
pushing the door in an arc, whilst rotating the wrist to keep
the alignment with the handle. Given a standard joystick
distinguishing between translational and rotational modes,
such a motion is simply impossible to perform.

A. Contribution

This work provides a novel dataset of user-controlled robot
arm motion in activities of daily living. The main purpose of
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the dataset is to learn the user’s intended motion given the
current situation, i.e. for a situation-adaptive user interface
of an assistive robot.

In order to avoid the previously mentioned chicken and egg
problem, part of the data is generated with a virtual robot arm
controlled by 38 able-bodied participants in a simulation. As
the robot arm precisely follows the human hand, no interface-
induced motion restrictions apply. The virtual data is padded
with a smaller sub-dataset created in our living-lab [11] with
a real robot, that is controlled by 4 trained researchers using
a 3D-mouse [12].

In short, we contribute a new dataset for assistive robotics
of 3 959 recordings (1.16 M datapoints), which
• shows realistic and purposeful robot motion in eight

simulated and one real scenario,
• provides aligned color and depth images for each

datapoint (compare Fig. 1),
• provides poses, velocities, action-labels and the gripper

status for machine-learning applications such as activity
recognition, AI-based robot control or visual-servoing,

• is preprocessed and ready to use with a provided
tensorflow-based [13] dataset loader,

• treats handedness by data-augmentation, and
• is available free-of-charge at
https://www.kaggle.com/f371xx/dormadl.

II. STATE OF THE ART

To our knowledge, no dataset exists that includes activity-
recognition data of an assistive robot arm or provides
sequential pose data of such an arm during the execution
of tasks in ADL. Both versions would hold the potential to
support the development of shared control algorithms that
focus on user intent.

In the field of activity recognition, various ADL-describing
sequential datasets are in use: The Human Activity Recogni-
tion database [14] consists of recordings of activities such as
walking or standing combined with inertial measurement
unit (IMU) data of smartphones. The Dataset for ADL
Recognition [15] relates wrist-worn accelerometer data to
activities such as brushing one’s teeth or eating soup. Other
datasets have multiple IMUs, be it body worn [16] or partially
attached to the environment [17] or use vision [18]. However,
all of these are recorded by able-bodied participants and
describe relatively broad tasks, where most activities are
ADLs themselves.

In a rehabilitation or healthcare setting in particular fall or
anomaly detection are interesting. The latter was examined
by [19], who published a dataset generated in a simulated
smart home environment for that express purpose. [20] shows
that these virtual environments, though by far not perfect, are
sufficiently realistic enough for neurorehabilitation.

From a more robotic perspective, the community prepared
multiple datasets to be used in (assistive or service) robotics:
The YCB [21] and YCB-Video [22] datasets link images of
objects to their respective 6D poses, with YCB having readily
available objects to be used as a benchmark. Knowing the
poses of seen objects can be very beneficial for automatic

grasping. The Cornell Grasping Dataset [23] expands on
this idea by providing grasp rectangles and point clouds for
objects in images. Even more specific, the Columbia Grasp
Database [24] combines 3D object models with grasp poses
for multiple variations of grippers.

In contrast to the datasets of activity recognition, the
robotic image datasets mostly provide single-shot information
and not video. The exception to this is the YCB-Video
dataset; however, in this, the camera simply pans around
the object without following any specific purpose (such as
grasping the object). This leads to mostly (semi-) autonomous
implementations in research of assistive robotics (e.g. visual
servoing [25]), even though users prefer manual control [26].

To fill this gap, this work presents a dataset of detailed
robotic arm motion in different ADLs. The dataset provides
sequential image data of purposeful interactions during the
activities and links these to pose and motion information,
as well as human-readable action labels. This allows for
applications to react to and analyze realistic situations.

III. RECORDING THE DATASET

The presented dataset is aimed to consist of purposeful
motion for the current task at hand. We define the robot’s
motion to be such, if the task completion was successful and
the robot hand behaved similarly to an able-bodied person
using their own hand, given the robot’s workspace restrictions.

In order to achieve the desired quality of motions, the data-
generating users were instructed to perform only intentional,
deliberate and clear motions during data generation. Each
scenario was repeated multiple times per user, with recordings
being stopped in between runs to prepare the next setup and a
few initial runs to get acquainted with the environment. Thus,
in this dataset, a recording will refer to a single attempt of a
user to perform a task once.

During each recording, object poses, including the individ-
ual joints of the robot arm [27] were stored regularly to be
later used to calculate camera poses and velocities. In addition
to the poses, data from an RGBD camera [28] was gathered.
This includes aligned color (RGB) and depth data, as well as
unaligned data from infrared cameras used to calculate the
depth data. In the simulation, this also included segmentation
images.

A. Scenario Selection

In order to create a dataset with situations that are both
realistic and relevant for the final users, we followed a
participatory approach that included both primary users (i.e.
people with disabilities who will actually control the arm) as
well as secondary users (e.g. therapists or caregiving relatives
who are indirectly affected). To develop these scenarios, we
followed the action research model by Margaret Riel [29],
[30] and the cycle-based participatory development process
Progressive Problem Solving with Action Research [31], [32].

In two workshops, five primary users (one of them using a
WMRA), two caregiving relatives, two physiotherapists and
several researchers collectively discussed different scenarios
in an open brainstorming session. The results were further
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evaluated with the participants (and one additional primary
user) in individual one-to-one interviews to allow for more
in-depth feedback. All workshops and interviews were
transcribed and qualitatively analyzed following Tuckett’s
thematic analysis [33]. Protocols and interim results were
distributed to everyone involved for heightened transparency
and short feedback cycles.

During the workshops, the primary users stated that the
most meaningful activities for them were eating and drinking
prepared food and beverages. One primary user stated that
“actually, eating is one of the major things (...) or rather being
independent (of another person) during it”.

Another activity that was important to all participants was
to open and close doors independently. One primary user
wished that they “could open the door, drive through it to
eat and drink, in a way that (they) could then simply grab
it (themselves)” to which a caregiver responded: “If (they)
could really eat with it alone, that would be nice; That would
be independence”.

Though initially dismissed during the workshops because
of constantly available human assistance, the scenarios of
pick-up tasks, shopping, or microwave-usage, were later
reintroduced in the interviews. Four primary users and two
caregivers changed their minds and saw these scenarios as
chances to gain more independence and relieve the caregivers.
One primary user stated, “I now see it as rather interesting in
my case (..). I’m home alone and my cell phone falls on the
floor or I need something (..) important that is on the floor”.

Further scenarios discussed in the workshops were activities
towards one’s personal hygiene, e.g. brushing teeth or using
a sponge, which users regarded as unsafe or unrealistic.

Finally, four scenarios were decided upon. They are shown
in Fig. 2 in reading order, starting at the top left. They are:
• Eating and Drinking: A prepared meal (e.g. a bowl of

cereal or a set of small pre-cut pieces of food) is on the
table. The robot arm grasps a fork or spoon, takes food
and brings it to the mouth. For drinking, an open bottle
or cup is grasped and brought to the mouth. Optionally,
the liquid is poured from one container to the other.

• Opening and Closing Doors: The wheelchair is po-
sitioned close to the door. The door handle is pressed
down with the gripper and the door is opened by pushing
or pulling with the WMRA. The wheelchair is driven
through the door and the door is closed using the robotic
arm.

• Microwave: A microwave is placed on a table accessible
to the robot arm. The gripper either pulls on the door
or presses the button that opens the microwave. A plate
with a prepared meal is grasped and placed into the
microwave. The arm closes the microwave, activates it
and retrieves the plate afterwards.

• Supermarket Shelf / Pick Up from Floor: This scenario
is inspired by the setting of shopping for groceries. It
includes a shelf with various objects, such as pasta
packages and cans, on the lower levels and at least one
additional object on the floor. The robot arm grasps the
objects and places them on a table or in a basket.

Fig. 2: Overview of the scenarios in the dataset. See media
attachment for individual videos

All scenarios were implemented in simulation, with eating
and drinking being combined into a single meal scenario.
In these, the virtual robot arm is mounted to a stationary
wheelchair. As the implicit motion of the wheelchair is not
part of the dataset, the door scenario does not include the
wheelchair moving, but instead only different positions from
which to open and close the door.

Another project inspired a scenario where the user is sitting
in a bed and the virtual robot arm is mounted to a sideboard
with a table attached to one side. In this environment, we
added the two scenarios Fill Cup and Cleanup Table, both
based on a photogrammetry-scan of an existing room in our
living lab (see [11]).

The Fill Cup scenario has two cups on the table with the
robot arm grasping one of them to pour water into the other
cup, whereas the Cleanup Table has various items (e.g. cups,
plates, and cutlery) on the table and the robot rearranges
them in an orderly fashion. These scenarios were chosen
as they support mundane but complex tasks (e.g. pouring
water, involving simultaneous rotation and translation), as
well as cluttered tasks with various grasps and non-obvious
sequential orders (e.g. rearranging objects), thus increasing
the difficulty of the dataset.

Finally, we added simple Block scenarios for both the bed
and wheelchair settings. Here, the robot is used to re-position
two blocks to a third block. These simple scenarios work as
a baseline but also provide various actions of grasping and
reorientation.

B. Recordings in Simulation

In order to create a sufficiently large dataset, part of
the data was generated in a virtual reality (VR) simulation
environment [34] based on a framework for shared control
applications of assistive robots [35]. This includes a virtual
version of the same robot arm used in reality. Simulation
also allowed to customize the camera’s pose or model after
the actual recording sessions and automatically assured user
anonymity, as only a virtual avatar is rendered.

To record data in the simulation, users were equipped with
a VR Headset [36] and motion controllers. Here, they would
perceive themselves, depending on the scenario, as either

[III]

75



sitting in a wheelchair with the robot arm attached to its side,
or sitting in a bed with the robot mounted to a sideboard.
The end effector of the simulated robot arm is connected to
the hand-held motion controller, thus enabling the users to
basically complete the task using their own hand, only having
to adjust for the limiting gripper functionality of the robot.
This was hoped to generate human-like but still functional
robot motion. The scenarios were developed such that the
workspace limitations of the robot would not impede the user.

As this method of control required no initial training of the
users, we gathered a variety of people to record data in order
to allow different approaches to tasks and variations of motion
in the data. An example image created in the simulation can
be seen in Fig. 3a.

(a) (b)

Fig. 3: Example datapoints in simulation (a) and reality (b)

C. Recordings in Reality

For the recordings in reality, an assistive robot [27] was
installed to a wheelchair and an RGBD camera [28] was
mounted to the last joint of the robot arm. Unlike the setup
in the simulation, the real robot cannot simply be moved by
following the user’s hand, as this would be visible in the
image data. Instead, a 3D mouse [12] capable of controlling
six DoFs (seven by adding two binary buttons) was used.

Controlling the real robot arm in sufficiently desired
motions required training with the 3D mouse and was
therefore limited to a selected group. This limited the number
of recordings and variety generated in reality. As the setup
and implementation of real scenarios takes a lot of time,
these were also limited. The real scenarios include versions
of Block, Fill Cup (including Drinking with a straw) and
Supermarket Shelf / Pick Up from Floor. An example image
generated in reality can be seen in Fig. 3b.

D. Data Labeling

As the recording system of the framework automatically
stores image-pose pairs of the robot in every frame, no
manual labeling of motions is necessary. On a higher level,
however, we were able to add activity labels by manually
assigning these to time ranges within each recording. As
typical activities in the field of activity recognition are
relatively broad and rather fit our definition of scenarios,
we assign Actions instead. These cover shorter ranges of time
and are more detailed. Mostly, these consist of a verb defined
in reference to an object (e.g. approaching the cup).

Table I lists all components of the actions. Most action-
verb combinations exist with only a few exceptions (e.g. the
door and handle are an exclusive pair as they are conceptually

connected). The table also lists verbs that only occur with a
single object as singular verbs; as well as stand-alone actions
without an object.

TABLE I: Overview of action components

verbs Approach, Grasp, Let go, Push, Retrieve
objects block, book, bottle, candle, cap, cup, door / handle,

food, fork, microwave door, milk carton, plate,
spoon, tea

singular verbs Align [cup], Close [door], Fill [cup], Press
[handle], Pull [door]

stand-alone actions Discard, Drinking, Eating, Idle

As most actions are self-explanatory, we will describe only
those with some ambiguity: Retrieve moves a held object to
another position. For the shelf scenario, a suffix indicates
the retrieval to the wheelchair table. Align cup positions a
cup above another for pouring, which itself is described as
Filling cup. Eating and Drinking both move a held item to the
mouth, optionally tilting it, and partially retract afterwards.

Discard is a special label referring to sequences with
recording issues. If recordings had Discard-labels at the
beginning or end, they were trimmed accordingly or not
included in the dataset altogether. Idle refers to the rest or
pull-back motions of the user.

In addition, every action was given a binary success token,
allowing for labeling of failed attempts. Unlike discarded-
actions, failures do not refer to software issues, but indicate
that the user was unable to complete their intended action
(e.g. dropping an object).

E. Preprocessing / Dataset Cleaning

The recorded raw data was processed to cleanup the dataset
and prepare it for easier use. For this, the initially measured
pose data was smoothed and differentiated over time to
generate motion information.

We define Ta←b := (p⃗, q⃗, g) as the transformation of a
robot’s coordinate frame b in reference to a and consisting
of a 3-DoFs position p⃗, 3-DoFs quaternion-orientation q⃗,
and 1-DoF gripper opening status g. In addition, we define
v⃗ b := (d⃗, r⃗, f) to be the relative velocity of the frame b
consisting of a translational, rotational, and gripper-velocity
respectively.

Let T̂base←EE be the raw data measured during recording.
Due to the rotational component’s dependencies, this data
has to be treated as a manifold [37]. We utilized a version
of the smoother on boxplus-manifolds proposed by [38] to
smooth the raw pose data over time, remove outliers and
handle data inconsistencies, thus creating a cleaner Tbase←EE.
To further contextualize the pose with the camera data, the
pose is transformed to Tbase←cam with the camera frame being
at the center of the color lens.

The dataset also provides the robot’s velocity v⃗ cam(t),
which is approximated as the relative camera motion per
timestep ∆tk, i.e.

v⃗ cam(tk) =
∆

∆tk
Tbase←cam(tk) =

Tcam(tk−1)←cam(tk+1)

tk+1 − tk−1
. (1)
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For this, we define the division of a transformation T
by a duration s to create the velocity v⃗, mostly following
vector multiplication, except for orientation which needs to
be converted to a rotation vector first, i.e

v⃗ = T/s = (p⃗/s, ln(q⃗)/s, g/s) = (d⃗, r⃗, f). (2)

The preparation also includes datatype conversions between
simulation and reality, outlier detection and removal, and
handling of lost frames. In order to retain time-series
information, invalid datapoints not at the beginning or end
of recordings were kept in the data and marked as such.

1) Handedness: One special case of our dataset is handed-
ness. Our robot arm has a non-symmetric 3-fingered gripper
that is intended to be used on the right side of the wheelchair.
However, a mirrored version of the same arm exists, that is
to be mounted on the left side of a wheelchair. In practice,
the chosen side generally aligns with the handedness of the
user. As both the arm and users were right-handed during
data generation, the dataset conforms to this practice in a way.
The position of the robot generally affects from which side
objects are approached, so data-points from both positions
are needed if any machine learning shall work with both.

We propose to computationally augment the dataset with
left-handed datapoints by mirroring the whole scene along the
central plane of the robot base, which is parallel to the user’s
central plane. This means flipping the image and velocities
relative to the camera around the YZ-plane (true also for
an obliquely looking camera) and flipping poses along the
central plane of the robot (px = 0). The specific formulas
for the left-handed T ′ := (p⃗ ′, q⃗ ′, g′) and v⃗ ′ := (d⃗ ′, r⃗ ′, f ′)
are simple but not trivial to derive:

p⃗ ′ :=



−px
py
pz


 , q⃗ ′ :=




−qx
qy
qz
−qw


 , g′ := g, (3)

d⃗ ′ :=



−dx
dy
dz


 , r⃗ ′ :=




rx
−ry
−rz


 , f ′ := f. (4)

IV. DATASET STRUCTURE
The dataset is split into subsets for training and testing

and is structured in two index files with the labels. The
image data is stored in a separate directory structure for each
recording and referenced by the index files. The data split
was performed on a per-user level, such that recordings of
a single user are either in the test or training set in order to
maintain more independence.

The recordings are processed and sampled at 10 Hz to
generate clean time series data. All datapoints of the time
series are listed in the csv files, with the recording number, a
user number, the scenario, a timestamp within the recording,
Tbase←cam, v⃗ cam(tk), the assigned action class and failure tag,
the validity-flag, and file paths for the image data.

This multi-dimensional data structure allows for different
settings and usages. The features can be a subset of the
camera data, consisting of an RGB color image and an aligned

depth image. In the simulation, a segmentation image is also
generated. In addition, but uploaded separately1 in order to
reduce storage size, the infrared camera data used to generate
the depth images can be loaded. The labels can be either the
pose of the gripper or camera, their velocities, or the assigned
actions. A python script is provided to assist loading default
dataset configurations.

V. DATASET STATISTICS
This section gives a brief statistical overview. All numbers

refer to the complete dataset, with the respective numbers
for the subsets in brackets as (training, test).

The dataset consists of 1.16 M (871 k, 290 k) datapoints
from 3 959 (3 165, 794) recordings with an average runtime
of 29.3 seconds, thus totaling to a length of approximately
29.3 (24.2, 8.1) hours. Thereof, 502 k datapoints from 986
sequences over 13.9 hours were created in reality. An example
for the poses of a single recording are shown in Fig. 4.
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Fig. 4: Camera poses during a single example recording with
(red, green, blue) being (right, up, forward)

The mean and a scaled representation of the sampled
covariance of camera motion is shown in Fig. 5. The scaling is
performed to be able to compare the translational, rotational,
and gripper velocities with different units. For this, a rotational
velocity of 180 ◦/s corresponds to a translational velocity
of 1000 mm/s, and, respectively, opening the gripper once
per second corresponds to 300 mm/s. To enhance visibility,
the covariance’s components are color-coded based on their
absolute ratios to visualize relationships.

unit mean
Translation X [mm/s] -0.564
Translation Y [mm/s] 5.629
Translation Z [mm/s] 4.686
Rotation X [◦/s] -0.177
Rotation Y [◦/s] 0.131
Rotation Z [◦/s] 0.331
Gripper G [1/s] 0.010
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G

9319 -392 2091 1534 1951 -5619 -147

-392 7026 528 -988 -703 412 66

2091 528 17167 5367 554 -280 323

1534 -988 5367 9288 -57 -1105 83

1951 -703 554 -57 13232 1217 120

-5619 412 -280 -1105 1217 20442 78

-147 66 323 83 120 78 4788

covariance

Fig. 5: Mean and scaled covariance of camera motion

Fig. 6 shows the distribution of the labeled actions over
the complete dataset. It can be clearly seen that objects are

1refer https://www.kaggle.com/f371xx/dormadl

[III]

77



represented more often which either have dedicated scenarios
(block, cup, microwave door) or are reoccurring (plate, cup,
bottle). The verbs show a focus on approaching and retrieving,
as well as opening and closing of the gripper. This is expected
as it is at the core of robot manipulation.

door1.2%
cap1.4%
handle

1.9%

spoon
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book
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milk carton

3.4%

fork

3.6%

food

4.1%
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door

7.5%
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Discard0.3%
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Closing1.0%
Pushing
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1.5%

Pulling
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Eating
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Drinking
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Idle

5.5%

Let go of the

7.8%
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11.3%

Retrieving 25.4%

Approaching

36.3%

Verb distribution

Fig. 6: Distribution of action labels in the dataset

VI. BASELINE MODEL STATISTICS

As a baseline for comparison, we trained two simple
networks on the dataset: One for activity (here action)
recognition and one to predict the camera’s motion direction
for direct robot control, robot servoing, or approaches of
shared control. Both can be thought of as predicting the
user’s intent from the current situation.

A. Baseline Action Recognition Model

MobileNetV2 [39] is used as a base model to predict
the robot’s action. The model backbone is extended with a
2D convolution layer with ReLU activation function, global
average 2D-pooling, as well as a dropout and a dense layer
with a softmax activation function. The model is trained to
classify the images into one of the actions performed by
the robot arm. A categorical cross-entropy loss function was
used during the training. Table II shows the baseline model’s
results for both the test and training datasets for the loss and
an accuracy metric.

TABLE II: Baseline results of action recognition model

train test
categorical cross-entropy 0.8554 0.9223
categorical accuracy 0.7066 0.6796

B. Baseline Motion Direction Prediction Model

For the motion direction prediction, we implemented a
baseline model able to output a multi-dimensional Gaussian
distribution of the motion, which allows for the use of
statistical tools. Even if a single output is required, one can
simply take the most likely value of the distribution.

The model is designed with a MobileNetV2 backbone [39]
extended with a 2D-convolutional layer with a batch normal-
ization, ReLU activation, as well as three fully-connected
layers, the first two of which with a ReLU activation.
For the final activation, a layer calculating a sample-based
covariance (compare [40]) was used to generate the probability
distribution. As this is intended as a simple baseline model, no
further extensions, such as recurrences, were added. The only

preprocessing was dimensional scaling to align translational,
rotational, and gripper velocity (Section V). The model was
trained using a Mahalanobis-loss [40].

To provide more intuitive values than the Mahalanobis-
loss, we propose a new metric: Let b = (⃗b1, . . . , b⃗n) be the
n-dimensional base spanned by the covariance’s normalized
principal components b⃗i (i.e. its eigenvectors), where b⃗1 has
the largest corresponding eigenvalue and b⃗n the smallest. We
can now calculate the projection p⃗ of our labeled vector v⃗
onto a k-dimensional sub-base s = (⃗b1, . . . , b⃗k)

p⃗ =
k∑

i=1

〈
v⃗ · b⃗i

〉
· b⃗i, (5)

where ï·ð is the scalar product of two vectors and k < n.
Together with the projection q⃗ on the complementing sub-
basis b = (⃗bk+1, . . . , b⃗n), p⃗ and v⃗ form a right triangle such
that pythagorean theorem yields |v|2 = |p|2 + |q|2. This
allows us to define |p|2 / |v|2 as a metric: the percentage of
the squared length of true motion that is represented by the
k first principal components of the probability distribution.
Note that the first k principal components maximize this
metric among all choices of b⃗1, . . . , b⃗n. This can also be seen
as how well one could follow the true motion, while only
moving along the axes b⃗1, . . . , b⃗k.

Within a direction-prediction task, the percentage-of-
motion-metric is to a Mahalanobis- or log-likelihood-loss
what the accuracy-metric is to a cross-entropy-loss in a
classification task: Both metrics reinterpret the evaluation
to a more human-readable form by simplifying (reducing) the
data. Here, accuracy assesses only the binary equivalence of
the label and the most likely class while ignoring the actual
probability value. Similarly, the percentage-of-motion-metric
assesses only the projection of the true direction in the the
sub-basis s while ignoring the remaining n− k dimensions.

Table III shows the baseline model’s results for the
Mahalanobis-loss distance, negative log-likelihood and the
percentage of motion metrics for k = 1 and k = 2, as well
as the root-mean-squared-error between the label and the first
principal component.

TABLE III: Baseline results of motion prediction model

train test
Mahalanobis-distance 4.6991 5.5219
negative log-likelihood -11.1994 -10.4222
percentage of motion (k = 1) 0.5844 0.4975
percentage of motion (k = 2) 0.7538 0.6741
root mean squared error 0.5229 0.5268

VII. LIMITATIONS

The quality of the dataset is limited by two main factors:
Issues in the methodology and the simulation reality gap.
Even though the simulation is designed to be very close to
reality, there are some aspects of robot interactions in reality
that were not implemented for various reasons.
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A. Methodology
As with typical learning-from-demonstration applications,

the dataset can only be assumed to provide accurate informa-
tion for situations similar to those recorded.

Apart from that, our method of robot control is based on
the assumption that users control the robot arm similarly to
a regular arm. This assumption might not be correct and
therefore make the data partially invalid. The data generated
in reality should improve this.

Only a small portion of the data is recorded in reality and
on a small subset of scenarios. The dataset could be greatly
improved by adding more real recordings.

Due to our participatory approach, we continued end-user
interviews during data recording. This resulted in a request
for the Meal scenario to be adjusted to eat cereals from a
bowl instead of using a fork to eat fruit. We adjusted this and
recorded additional data in a separate instance. This results
in an imbalance in the number of scenarios and users.

B. Simulation-Reality-Gap: Camera Data
The simulated camera follows the real camera in terms

of camera parameters and effects (compare [35]). In order
to verify the simulated camera quality, we generated data
with both the real and simulated cameras in environments as
similar as possible (Fig. 7).

Fig. 7: Comparison of real (top) and simulated (bottom)
camera data

It can be seen that the color data (left) is close to identical,
whereas the depth data (right) shows vast differences, as the
simulated camera is perfect while the real camera suffers
from multiple image effects. These mostly stem from the
stereo depth algorithm used by the real camera, which uses
grayscale image data generated from two additional built-in
cameras. We provide simulated versions of these images in a
separate repository for users interested in calculating more
realistic depth images.

There is no additional noise or image effects in the
simulated data. If required, users can simply add these
manually.

C. Simulation-Reality-Gap: Robot Arm
As mentioned in [35], the simulated robot arm is built

from original robot data, including mechanical dimensions

and meshes. However, in order to avoid movement limitations
during data generation, the simulated robot is not controlled
using an inverse kinematic and therefore not limited to the
motion limits of the real robot. Instead, the simulated joints
are spring-based and can, to some extent, move beyond the
intended angle limits.

The simulated robot is controlled by moving the motion
controller and having the end effector follow it. This results
in each robot link in row being pulled along, such that the
robot behaves similar to a rope in zero gravity. While this is a
major difference to reality, this should not change the relative
motion per datapoint which depends only on the camera pose.

D. Simulation-Reality-Gap: Grasping
The simulated grasping is not physics-based but instead a

software solution, such that an object is considered attached
to the robot hand if squeezed by opposite fingers. This can
sometimes cause unrealistic behavior.

In our setup, however, objects are easily graspable with
the robot. Poorly-graspable or very heavy objects would
have more issues that are therefore avoided. Another factor
weakening the effect is due to the use of human operators
instead of a script. It can be assumed that humans instinctively
prefer realistic grasps.

However, the two doors (room door and microwave) could
not be designed as such, as they are not lifted but instead
opened or closed. Custom interactions were designed for
these, where the robotic hand would retain a relative pose to
the handle whilst grasped.

VIII. CONCLUSIONS
In summary, we present a novel dataset applicable to

multiple fields associated with assistive robotics. The dataset
is easily accessible free of cost and can be used for both
robot control as well as activity recognition tasks.

We provided detailed descriptions of the specific method
applied to generate the dataset, using both a simulation envi-
ronment and an associated setup in reality. The capabilities
and limitations of the dataset were discussed in detail and
metrics were presented as baselines for machine learning
research.

Future work should focus on utilizing the provided data to
gain insights into user behavior and optimize shared control
implementations based on this knowledge. This can, for
example, be achieved by analyzing the recorded motions
and manually implementing specific interactions, possibly
dependent on the current action or activity. Alternatively, data-
driven machine-learning models could be trained to predict
the user’s intended motion in order to offer the most likely
direction of control as part of a user interface.
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ABSTRACT
This paper presents a novel approach to shared control for an
assistive robot by adaptively mapping the degrees of freedom (DoFs)
for the user to control with a low-dimensional input device. For
this, a convolutional neural network interprets camera data of the
current situation and outputs a probabilistic description of possible
robot motion the user might command.

Applying a novel representation of control modes, the network’s
output is used to generate individual degrees of freedom of robot
motion to be controlled by single DoF of the user’s input device.
These DoFs are not necessarily equal to the cardinal DoFs of the ro-
bot but are instead superimpositions of those, thus allowingmotions
like diagonal directions or orbiting around a point. This enables
the user to perform robot motions previously impossible with such
a low-dimensional input device.

The shared control is implemented for a proof-of-concept 2D
simulation and evaluated with an initial user study by comparing
it to a standard control approach. The results show a functional
control which is both subjectively and objectively signi�cantly
faster, but subjectively more complex.

CCS CONCEPTS
• Computer systems organization→ Robotic control; Neural
networks; • Human-centered computing→ Interaction devices;
Interaction techniques; • Social and professional topics→ People
with disabilities; Assistive technologies.
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1 INTRODUCTION
The general understanding of autonomy and technical systems is
something akin to using a computer program to independently
control the actuators of a machine or robot to solve a given task.
While this might be appropriate for the default industrial scenario,
it stands in vast contrast to applications of assistive robots, such
as the Kinova Jaco [17, 20], which aim to (re-)enable a person to
perform activities of daily living themselves, instead of having them
performed by another person or program. However, the manual
control of such devices can be very exhausting and taxing for the
user due to the complexity of the system and the user’s impairments,
thus generating a necessity for easier and more accessible methods
of control [5].

Some previous work has been done with the aim to automate or
ease speci�c activities of daily living [6, 8, 24]. However, a study in-
vestigating the performance and satisfaction of spinal cord injured
users of a wheelchair-mounted robotic arm with regards to manual
and autonomous control modes showed a higher satisfaction for
manual mode users, even though the autonomous mode required
less e�ort [16]. The resulting call for more �exible interfaces co-
incides with �ndings by [21], who show the users’ requirement
to personalise their interaction such that personal standards and
social norms are met. A situation with robotic assistance should
be as similar as possible to a respective situation without impair-
ments. Therefore, one should be very careful when applying fully
automated solutions to such assistive scenarios.

The alternative to a system being controlled by a computer is
usually to have it directly or indirectly controlled by a human
using a form of Human Computer Interface (HCI) with a keyboard,
joystick or similar input device. However, very few devices have
su�cient Degrees of Freedom (DoFs) to directly control a robot like
the Jaco and those that ful�l this speci�cation require a signi�cant
dexterity from the user. For most users of assistive robots, this poses
an impossible challenge due to their sicknesses or disabilities. In
order to use the remaining mobilities of a user, speci�c HCIs have
been developed [13, 19, 23, 23] which, due to the speci�cations and
limitations, mostly cannot compare to the default control interfaces
when it comes to their output DoFs. For example, the Jaco requires
at least seven DoFs (three for positioning, three for rotation, and
one for grasping), whereas input devices such as Eye-Trackers [23],
Chin- or Tongue-Mouses [10] only provide two. Even the robot’s
joystick only provides a maximum of three DoF to be controlled
at once, with buttons allowing to switch between di�erent control
modes (cf. [1, 13, 18]). An extensive literature review regarding
functionality and performance of assistive robots concluded in a
call to “develop a two-way user interface between higher dexterity
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[robots] that could be operated by fewer [DoFs] from end-users”,
whilst keeping the users in control, as desired [3].

Various forms of shared user control exist, where the systems
utilise a combination of input from the user and the output of a
computer program. For example, [25] initially lets the user control
only the translational DoFs of a robot arm, whilst automatically
handling rotation. Close to a de�ned target, the system starts blend-
ing the user input with an automated grasp approach based on
the user-de�ned position, until �nally applying a fully automated
grasp action. Based on a literature study on multiple systems using
shared control, [2] identi�es the detection of user intent as one of
the largest problems within this area and calls out for moreMachine
Learning (ML) in shared control approaches. Following this call,
[7] presents a shared control approach for an electric wheelchair
passing small doorways, where the user can activate a blend of
their commands with a pre-trained ML-generated control.

�
�ÿ Ā

ý þ

Figure 1: Control pipeline for a user-controlled assistive ro-
bot

This paper presents a proof of concept for a novel variation of
shared control, where a Deep Learning (DL) based setup evalu-
ates the current situation and adaptively proposes a set of high-
dimensional DoFs of robot motion to be controlled by the user’s
low-DoF input device. Figure 1 shows the corresponding control
pipeline: Usually, the user-generated input D is directly mapped to
the robot-controlling input E (i.e. � is static), which enables the
user to control a single cardinal DoF of the robot (i.e. x-axis, y-axis,
z-axis, roll, pitch, yaw) with each DoF of their input device. In cases
where the input device has fewer DoFs than the robot control, the
user generally has the option to switch between pre-de�ned modes,
thus changing the mapping from input device DoF to robot control
DoF (i.e. exchange �). We break this static connection by using a
Convolutional Neural Network (CNN) to describe the probabilistic
distribution ~ of intended robot motion E given the camera data G
(i.e. the current situation). A Principal Component Analysis (PCA)
is applied to calculate a matrix � that adaptively maps the user-
generated input to the robot motion, thus portraying modes of
control.

The user stays in control; in particular a zero user command D
always results in no motion. This eliminates much of the safety
concerns of machine learning.

The presented approach enables the DL system not only to sug-
gest the set of cardinal DoFs but also superimpositions of those,
thus allowing motions previously impossible with a limited set of
input DoFs, such as diagonal paths, orbiting around a point in space
or approaching a goal at an angle (cf. Fig. 2). For this paper, the
proof-of-concept scenario is limited to a simulated 2D environment
with a robot de�ned by four cardinal DoFs (two positional, one

rotational, and grasping). Figure 2 shows the robot with cardinal
and adaptive DoFs, both represented by arrows.1

Figure 2: The simulated robot with two out of the four car-
dinal DoFs (left) and two adaptive DoFs (right)

The paper is organised as follows: After a review of previous
research to handling the discrepancy of input to output DoFs in
Section 2, Section 3 describes our approach in detail, with the sim-
ulation environment being described in Section 4. An initial user
study is presented in Section 5, with Section 6 discussing the result-
ing implications and directions for future work.

This paper provides a proof of concept for adaptive DoF mapping
in a 2D simulation environment.2 Its contributions are

• the idea of a novel DL approach to shared control for an
assistive robot arm,

• a general representation for DoF-based user control, option-
ally with modes,

• a 2D simulation environment for proof-of-concept of such
methods, and

• an initial user study regarding the usability of such an ap-
proach to shared control.

2 RELATED WORK
The default method to controlling a high-DoF device using a low-
DoF input device (e.g. controlling an assistive robot arm using
a joystick) is mode switching. A single DoF of the input device
controls a single cardinal DoF of the robot. Switching the selected
mode changes this mapping, such that the same user input now
controls a di�erent cardinal DoF of the robot. To the best knowledge
of the authors, no shared user control exists that allows the user
to control a device along arbitrary online-de�ned DoFs. However,
there are di�erent approaches to mapping user input from a low-
DoF input device to a high-DoF system, as well as ML setups that
learn autonomous behaviours in a high dimensional environment.

For this paper we use cardinal DoFs to describe the set of DoFs
de�ned by, and axis-aligned to, the Cartesian coordinate system of
the robot, plus an additional DoF to handle closing the gripper. For
a robot with at least six DoFs in 3D space, like the Kinova Jaco, this
would be [X-Axis, Y-Axis, Z-Axis, Roll, Pitch, Yaw, Gripper].

Based on their method of user inclusion, it is possible to di�er-
entiate control approaches into two categories [11]: In one the user
indicates targets and the autonomous system executes the action
mostly without user interaction (cf. [26]). The other integrates the
user as a direct source of movement control. If a user functions
as a direct source of control input, they often have an HCI with
low-DoF input device and di�erent control modes. In experiments
1Video available at: http://www.informatik.uni-bremen.de/agebv2/downloads/videos/
GoldauPetra21.m4v
2Resources available at: https://github.com/f371xx/adaptive_dof_mapping_2d
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by [11] using an HCI with a standard button-based mode switching
setup, more than one-sixth of the total execution time was spent
changing the currently selected mode. Within a deterministic sim-
ulation environment and a prede�ned goal, they showed that an
automatic mode switching approach already leads to an increase in
user satisfaction.

Many manipulation actions require precise positioning. There-
fore, when controlling a device towards a goal (e.g. grasping a cup),
slight corrections in direction or orientation need to be made. De-
pending on the environment and perception of the user, this can
be a di�cult task. For the task of grasping a cup, this would be the
precise positioning to not accidentally approach the cup o�-center
or tip it over with the �ngers. Also, if applying a mode switching
approach, these small adjustments generally require multiple mode
switches, all with very small actual movements of the device within
a single mode. To avoid this, research has shown remarkable suc-
cess with control blending [5], which arbitrates the user’s control
input with computer generated control, thus allowing the com-
puter to assist the user by avoiding obstacles or supporting with
the �nal approach [4]. However a study has shown that the level of
assistance should be customisable by the user to allow for perfect
adjustment to the user’s needs and abilities, as well as increase user
satisfaction [14].

With more complex scenarios and non-deterministic users, mul-
tiple goal states can be possible in a given situation (e.g. multiple
cups available from which the user can choose which to grasp).
For these scenarios, [9] presents a di�erent approach to assistive
mode switching: The system isolates possible user intentions and
chooses the control mode whose actions will maximise the arbi-
tration of possible user goals in order to assist the ML System in
identifying the underlying intention. Once a threshold certainty
about the user’s intent is surpassed, control blending is applied to
assist the user. While this does show promising results, the user’s
control options are still limited to the cardinal DoFs.

Controlling more complex movements with a low-DoF inter-
face has been realised by prede�ning sequences within a complex
task and using autonomous planners to execute the task. Instead
of directly controlling each cardinal DoF of the manipulator, the
user utilises their low-DoF interface to de�ne the velocity of the
automation and switch between the automated trajectories [15].

A more general option of controlling a robotic device with an
HCI is introduced by [22], who propose a neural network to map the
sensory readings of an input device to the control signals for a robot.
However, within their work they aim to learn an intuitive constant
mapping per user and task, therefore restricting the mapping to be
static and not adaptive to the situation.

3 MAPPING DEGREES OF FREEDOM
We want to not only do intelligent mode switching but instead
loose the system’s prede�ned de�nitions of DoFs and allow the
user to control the robot along DoFs that are regularly rede�ned
based on the current environment and situation.

3.1 De�nitions
A DoF 3 is therefore not limited to the prede�ned set of cardi-
nal DoFs but instead a vector 3 ∈ RĤ, ∥3 ∥2 = 1 in the cardinal

coordinate space. This allows for DoFs that are not necessarily axis-
aligned to the cardinal coordinate frame, such as moving diagonally
or orbiting around a point. A 1-dimensional user input device (e.g.
a 1D joystick) could therefore control a high-DoF robot along such
an arbitrary =-dimensional DoF.

In the general case, given D ∈ Rģ as the output of an<-dimen-
sional user input device and E ∈ RĤ as the =-dimensional robot
motion, a matrix � ∈ RĤĮģ, � = (30, 31, . . . , 3ģ) can be de�ned
such that

E = � · D, (1)
where � linearly maps an individual robot motion DoF 3ğ to each
DoF of the user input device (cf. Fig. 1).

As most input devices supply fewer DoFs than the system which
they control (< < =), a form of mode switching is generally applied.
In our notation, this would be equal to exchanging the DoF-mapping
matrix � . As an example, Figure 3 shows the static DoF-mapping
matrices of the three default control modes of the Kinova Jaco
joystick, omitting Drinking mode and the two-�nger grasp option.

X-Axis
Y-Axis
Z-Axis
Roll
Pitch
Yaw

Gripper

Translational mode︷       ︸︸       ︷
©«

1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0
0 0 0

ª®®®®®®®®®¬

Wrist mode︷       ︸︸       ︷
©«

0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1
0 0 0

ª®®®®®®®®®¬

Finger mode︷       ︸︸       ︷
©«

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
1 0 0

ª®®®®®®®®®¬
Figure 3: The DoF mapping of the default control modes on
the Kinova Jaco joystick

Assuming the use of an input device with su�cient DoFs (< = =)
and corresponding DoF-map �̂ ∈ RĤ×Ĥ, �̂ = (30, 31, . . . , 3Ĥ) with
linearly independent DoFs 3ğ and therefore rank(�̂) = =, a user
would have complete control of the system without the necessity of
switching modes. We name such a mapping a complete DoF-set. If
each DoF of an input device directly controls a single cardinal robot
DoF using a complete DoF-set, �̂ would be equal to the identity
matrix. For an input device with< < =, the mapping for di�erent
modes can be generated based on a complete DoF-set by stacking<
columns of �̂ , optionally using zero-padding if< ∤ =. This method
ensures that the set of modes collectively gives the user the same
complete control as an input device with < = = if each column
(i.e. DoF) of �̂ is represented in at least one mode. For the Kinova
Jaco joystick, the underlying identity matrix-shaped �̂ can easily
be seen in Figure 3.

3.2 Approach
Our approach is to adaptively calculate the mapping � for a low-
DoF input device, such that the most likely direction of control
is represented by the �rst DoF in � . We require that the DoFs
are perpendicular to one another, such that each of the remaining
columns represents the next most likely direction for arbitration.
Assuming an optimal mapping, the �rst DoF should therefore enable
the user to manoeuvre the manipulator to their desired position,
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with the second DoF allowing them to adjust according to personal
preferences. Further options of arbitration exist with the remaining
DoFs.

For clari�cation, please see the following example: A user wants
to pour water from an open bottle into a cup. Whilst approach-
ing the bottle, the �rst DoF initially o�ers a 3D path command
towards the cup, with the second DoF o�ering an adjustment in the
z-direction, thus allowing to grasp the bottle higher or lower. Once
in grasping range, these DoFs automatically switch to grasping and
rotation around the bottle.

We generate the mapping � from a complete DoF-set �̂ . If the
user wants to perform an action not represented by the current
mapping, simple mode switching is applied as a fallback option to
give the user the remaining modes for complete control. This can,
for example, be automated by switching after a de�ned idle time,
thus allowing to control a complex high-DoF system with a very
low-DoF input device. Regarding the update rate of the mapping,
internal tests showed the best results when keeping � static while
the user is performing any action and, therefore, only updating �
when the user gives no input (i.e. zero-input).

3.3 Learning Degrees of Freedom
In order to learn a mapping of DoFs given a certain situation, train-
ing data of robot motion is required. As we aim to extend the
possibilities of control that are possible with a speci�c low-DoF
input device, it is necessary to take advantage of more complex
methods of control (i.e. high-DoF input devices) for the demon-
stration sequences. Therefore the control pipeline of the deployed
implementation in Figure 1 di�ers from the training setup.

During data generation, using an<-dimensional input device
to command an =-dimensional robot with< g = allows maximum
�exibility and avoids control-based restrictions of robot motions.
Applying such a setup, the user interface software requires no mode
switching and a simple identity matrix-shaped DoF-mapping � .
For data generation and training, the control pipeline is therefore
a direct link between input commands D and robot motions E . For
our scenario, a joystick-equipped gamepad with continuous user
input is used.

This setup allows to intentionally use able-bodied subjects with a
very di�erent method of control to generate training data, making it
much easier to collect the dataset. Based on this, the CNN can learn
a distribution ~ of arbitrarily complex robot motions E for a speci�c
situation as described by the camera image G . This means for a
situation as perceived by the camera image G , the CNN predicts
which robot motions E are likely and unlikely to follow, expressed
as a distribution of robot motions ~.

3.4 Probabilistic view
We view the training data as samples from everyday activities
performed by a robot arm. For the probabilistic view discussed here,
an outcome of the considered probability space models a snapshot
of a random moment of a random everyday activity.

Let - , . and + be random variables, where - represents the
image provided by the camera and + the robot motion. We are
interested in the training distribution of + given - (+ |- = G),
i.e. what DoF the user will most likely command in the speci�c

situation evident in the camera data - = G . This distribution shall
be the basis for selecting an optimal DoF-mapping � and hence the
output of the CNN.

Accordingly, we assume % (+ |- = G) to exist and follow a multi-
variate normal distribution NĤ (`, Σ) with the mean vector ` ∈ RĤ
and the symmetric, positive de�nite covariance matrix Σ ∈ RĤ×Ĥ . .
contains parameters describing `, Σ and is therefore also a random
variable, depending on - .

Treating the control commands in training sequences as samples
of + , a feed-forward CNN is used to estimate . given the camera
input - . The link between . describing the conditional distribution
of+ and the particular+ in the training sample is made by a speci�c
loss (see below), similar to a maximum likelihood loss. Wemoreover
de�ne ` = (0, . . . , 0)Đ to represent a zero-motion when having the
respective zero-input from the user. The CNN therefore only needs
to calculate the covariance matrix Σ.

Knowing the distribution of user commands in a given situation
allows us to extract a representation of principal components and
use these as DoFs for our mapping. We can therefore calculate a
complete DoF-set �̂ by generating a matrix where each column
represents an eigenvector of Σ, sorted in descending order by their
respected eigenvalues. Thus, the mode generated by taking the
�rst< columns of �̂ as � represents the smallest expected error
between the expected (intended) robot motion+ and what the user
can command with the input device using D. This will be derived
in the following.

3.5 Mathematical Derivation of Optimal D
Our DoF-mapping� in (1) has fewer rows = than columns<, hence
not every E can be obtained by an appropriate D. However,

D = �+E, (2)

with �+ as the Moore-Penrose-inverse of � gives the input D that
produces a robot motion �D as close to E as possible.

With this in mind, we want to obtain the best DoF-mapping
� ∈ RĤ×ģ given that the intended user command+ in this situation
is distributed as + ∼ NĤ (0, Σ). We de�ne best by the following
requirements:

∥�D∥2 f ∥D∥2 ∀D ∈ Rģ (3)

minimize E
(
∥+ − ��++ ∥22

)
(4)

among (4)-optimal � minimize E
(
∥�++ ∥22

)
(5)

Requirement (3) forbids too large ampli�cation of the user input,
which would make the system hard to control. It also avoids an
in�nite optimum for � in (5). Requirement (4) expresses our pri-
mary goal, namely to minimize the expected di�erence between
the robot motion desired by the user+ and the one ��++ that can
be commanded via the input device. In general, there are several op-
timal solutions and among these, we prefer the one that minimizes
the command (5).

Note that (4) depends only on the subspace spanned by the
columns of � (span�), while (5) depends on � itself.

� can be singular-value decomposed as� = � diag(f1, ..., fģ)�Đ ,
� ∈ RĤ×ģ , � ∈ Rģ×ģ , with orthonormal � and �. Due to (3),
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fğ f 1∀ 8 , (5) can be rewritten in terms of the fğ as

E
(
∥�++ ∥22

)
= E

(
∥� diag(f−11 , ..., f−1ģ )�Đ+ ∥22

)
(6)

= E
(
∥ diag(f−11 , ..., f−1ģ )�Đ+ ∥22

)
(7)

= E ©«
ģ∑
Ġ=1

(
f−1Ġ �Đ•Ġ+

)2ª®¬
(8)

=
ģ∑
Ġ=1

f−2Ġ E
((
�Đ•Ġ+

)2)
(9)

Now � can be replaced by � ′ = ��Đ (equivalently f ′
Ġ = 1) which

is orthonormal, still meets (3), has the same span as � and hence
the same (4). It has at least as large singular values as � and hence
an equal or smaller (9). Thus it improves (5).

In conclusion, we can restrict our search for the optimal (4) to
orthonormal � , because among the solutions equally good in (4),
there is always an orthonormal one at least as good in (5).

We know, that��++ is the closest approximation of+ in span� .
Hence, + − ��++ is orthogonal to span� and ��++ . It follows
by the Pythagorean theorem, that

∥+ − ��++ ∥22 = ∥+ ∥22 − ∥��++ ∥22 (10)

= ∥+ ∥22 − ∥�++ ∥22 = ∥+ ∥22 − ∥�Đ+ ∥22, (11)

where the last two equations are because � is orthonormal. So (4)
is equivalent to

maximizeĀ orthonormal E
(
∥�Đ+ ∥22

)
= tr Cov(�Đ+ ) (12)

= tr�Σ�Đ . (13)

This is a well studied problem in linear algebra and as [12, Corol-
lary 4.3.39] states, the maximum is obtained when � is chosen as
orthonormal eigenvectors to the< largest eigenvalues.

This is the mathematical justi�cation of our approach. It can
be readily generated by de�ning the eigenvectors of Σ sorted by
descending eigenvalues as a full DoF-set �̂ . First, � consists of the
�rst< columns of �̂ . Should the desired robot motion not be (well)
covered by these DoFs, the user can switch to the next< columns.

3.6 Implementation
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Figure 4: Neural Network

The structure of our CNN is shown in Figure 4. The image-
shaped features are processed by Convolutional (Conv) layers with
Rectifying Linear Units (ReLU), Batch Normalisation (BN) and max
pooling such that fully connected layers can be applied on a �at

feature vector. As the �nal layer, a sample-based method estimates
the covariance matrix Σ, with

Σ̂ =
1
:

ġ∑
ğ=1

(
Cğ

∥Cğ ∥2

) (
Cğ

∥Cğ ∥2

)Đ
, (14)

Σ = Y �Ĥ + Σ̂, (15)
where Y > 0, �Ĥ is the n-dimensional identity matrix and Cğ ∈ RĤ
are : samples generated by the previous layer. Each sample is
normalised, such that

tr(Σ̂) =
Ĥ∑
ğ=1

_ğ = 1, (16)

with _ğ , 8 = 1 . . . , = being the eigenvalues of Σ̂. This method func-
tions as a novel output layer for neural networks, allowing to learn
conditioned covariance matrices, guaranteed to be positive de�nite
with de�ned trace.

We trained our neural network using the loss function ; (E, Σ)
; (E, Σ) = EĐ Σ−1E (17)

based on maximum log-likelihood loss, to learn a distribution such
that the probability of the robot motion E ∈ RĤ is maximised. In
comparison to the standard maximum log likelihood loss, we have
omitted constant scaling factors and o�sets, as well as the term
ln |Σ|. Conceptually, this term penalises the covariance matrix for
growing too large. As we limit this already by de�ning the trace of
the matrix and internal tests showed better training results without
this term, we chose to omit it.

4 SIMULATION ENVIRONMENT

ab

c1

c2

d

Figure 5: Element overview of the simulation environment

A simple 2D simulation environment was created to develop,
test and evaluate the basic principles of adaptive DoF learning as a
proof of concept. Figure 5 shows a section of the environment that
includes all relevant features. To function as a minimal working
example, the user-controlled device is a robotic manipulator (a)
able to move forward and backward, sideways, rotate around its
center, and close the gripper (b). This sums to a 4-dimensional
setting, or 4 DoFs for the user to control. Two blue boxes (2ğ ) need
to be grasped and moved towards the goal marker (d). The physics
between the robot, gripper and boxes are handled by a Box2D
JavaScript port3, while the goal marker is solely visual and has no
colliding component. At the start of an iteration, all components
are positioned randomly. Optionally, the simulation can be toggled,
3https://github.com/hecht-software/box2dweb
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such that the boxes have spikes on one side (cf. 22), e�ectively
adding an additional complexity to the scenario, as the gripper can
now only grasp the boxes from the side opposite the spike.

Within this environment �ve options exist to control the robot:
(1) standard control using 8 binary buttons on the keyboard (2

per DoF, one positive and one negative) to control the robot
along the cardinal DoFs, therefore allowing only a limited
set of directions,

(2) standard control using 4 binary buttons and automated mode
switching to cycle through all four cardinal DoFs,

(3) standard control using a joystick with multiple continuous
inputs, thus ful�lling the requirement of a high-DoF input
device in section 3,

(4) adaptive control using up to 4 binary buttons on the keyboard
to steer the robot along up to twoDoFs of the neural network-
generated DoF-set, and

(5) adaptive control using a joystick with continuous input val-
ues based on the same DoF-set as 4.

Option 3 was used for data generation and options 2 and 4 for
evaluation. Options 1 and 5 are used for testing and future work
respectively.

A mode switching setup is used after �ve seconds without user
input. The currently active DoFs are represented by colored arrows,
showing the future state of the robot when following the respective
DoF. Figure 2 shows an example situation, with the standard control
shown on the left and the adaptive control on the right. When
using adaptive control, a server evaluates the current state of the
environment and generates the DoF-mapping matrix � for the
simulation.

The simulation is implemented in JavaScript, therefore allowing
quick and easy website deployment for user studies and evalua-
tions. A variety of settings are customisable within a user inter-
face and allow di�erent deployment strategies for the changing
DoFs, thus enabling us to evaluate how much DoF-variety, and
therein complexity, users can handle. Internal tests showed the best
results when not altering the DoF-set while the user enters any
non-zero input and normalising the individual DoFs such that the
largest component is always positive. While this prevents the neu-
ral network from constantly adjusting the DoFs to create smoother
movements, it makes the motion more predictable for the user. The
simulation can generate DoF-mappings either using rendered im-
ages for CNN-approaches or as an optional alternative using a slim
eight-dimensional status vector.

5 USER STUDY
To evaluate the concept of adaptive DoF control, we ran an initial
user study based on the 2D simulation system described above.
The aim was to compare the standard control (i.e. a static identity
matrix-shaped DoF-set) to our adaptive control.

Following the low-DoF HCIs of assistive systems, control option
2 was used for standard control and option 4 for adaptive control.
The user input is therefore limited to four binary keyboard buttons
to control two DoFs of the robot and having an automated mode
switch after every �ve seconds without user input. The adaptive
DoFs are rede�ned by the network whenever there is no user input,
whereas the standard control is based on the cardinal DoFs.

The users were tasked with completing the scenario twelve times:
Use the robot to grasp one box after the other and deliver each
of them individually to the goal. After every three attempts, the
control method switched between standard and adaptive control.
After six attempts, spikes were activated for the boxes. To avoid
preferences due to training e�ects, the initial control method was
chosen randomly. Before the experiments, each user was shown an
introductory video explaining the interface and control methods.
During the experiment, the users were kept informed about the
currently selected control method. Finally, each user was asked to
anonymously evaluate their experience using a questionnaire.

To evaluate the impact of training, a small subset of users were
given additional training of roughly ten minutes after their partic-
ipation in the above-mentioned experiments. After this training,
they repeated the adaptive sections of the experiment and gave
their evaluation in a similar questionnaire.

5.1 Training
For the adaptive control we trained CNNs for both the scenario
with and without spikes based on individual training sets, where
the former dataset had spikes activated during data generation. In
order to allow complete freedom of motion, the training data for
both sets were generated with control option 3. For each training
sequence, the simulation started with a random con�guration and
the users were tasked with grasping the boxes (on the non-spiked
side if applicable) and delivering them to the target.

The dataset used for the scenario without spikes was generated
by two people and consists of 392 sequences with a total of 29927
datapoints. The network converged in seven epochs.

The dataset used for the scenario with spikes was generated by
three people and consists of 488 sequences with a total of 28075
datapoints. The network converged in eight epochs.

5.2 Results
The group of participants consisted of 23 people with a 8/13/1/1
gender split (female/male/diverse/no answer) with ages from 20
to 34 (25.96 ± 3.30). Of those, 2 male and 2 female, ages from 22
to 26, participated in the extended study after training. Regarding
their previous experience with keyboard-based controls, the users
responded between 1 and 10 (7.04 ± 3.10) on a scale from 1 (never
used before) to 10 (usage on a daily basis).

0 1 2 3 4

Control is fast

Control is easy

agreement from 0 (not at all) to 4 (completely)

Figure 6: User evaluation of standard (white) and adaptive
(grey) control

The users evaluated the speed and ease of both control methods
in each scenario (square boxes and boxes with spikes) on a 5 point
Likert scale. Figure 6 shows the results in a bar chart with the bar
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width representing the mean value and error bars showing the
standard deviation.

We evaluated two hypotheses, �1: adaptive control is subjectively
faster than standard control, and �2: standard control is perceived
easier than adaptive control using dependant two-sampled one-sided
t-tests. We were able to reject the null-hypotheses for both �1 and
�2 and show the di�erences to be signi�cant (cf. table 1).

On a scale from one to �ve, the users gave the standard control a
rating of 3.17± 0.65 and the adaptive control 3.09± 1.00. Evaluating
the suitability of the presented controls in more complex scenarios
on a scale from one to ten, the users gave (4.87 ± 1.79) points for
the standard control and 5.83 ± 1.99 for the adaptive control.

0 50 100 150 200

Standard Control

Adaptive Control

time in s

Figure 7: Sequence execution times

Figure 7 shows the distribution of sequence execution times
using either standard or adaptive control. While the times vary
strongly, it can be observed that the fastest sequences were always
performed with the adaptive control, whereas the slowest used
standard control. We evaluated hypothesis �3: adaptive control is
faster than standard control with a dependant two-sampled one-
sided t-test and were able to reject the null-hypothesis and conclude
the results to be signi�cant (cf. table 1). This supports the subjective
user responses regarding speed and shows that they were able
to successfully utilise the subjectively more complex control to
achieve lower execution times.

Table 1: T-test results

"Ā (�Ā t df p
�1 -1.07 1.46 -3.51 44 < 0.001
�2 1.70 0.86 9.43 44 < 0.001
�3 21.32 49.96 5.01 274 < 0.001

After additional training, the subset of users performing adaptive
control a second time rated the adaptive control faster and easier
than before training, while still not rating quite as easy as the
standard control. The measured average execution times of the
adaptive control sequences after training are lower than before,
thus supporting their claim.

5.3 Limitations
The data obtained by this study has been generated entirely online
andwithout any supervision.While this assures real anonymity and
avoids personal bias, it cannot be assured that all users completely
understood the control methods and the task itself. The partici-
pants of the study included a good gender diversity and variety of
experience, but only a small age range.

In an optional comment �eld, some users expressed their desire
for a more extensive training and the corresponding expectation
that this would greatly bene�t the adaptive approach. For the stan-
dard control, they also listed the mode switching delay as too long,
with some requesting an additional button for switching. Users also
complained about not using di�erent subsets of cardinal DoFs (i.e.
di�erent de�nitions of modes). For the adaptive control, there were
some complaints about too quick DoF changes, as well as occasional
situations where the �rst and second DoF swapped among each
other, therefore missing an opportunity to learn a button-to-action
mapping for the user.

In addition to the data presented, �ve participants generated
data, that was deemed �awed and omitted: One person left the
simulation idle for several minutes, thus rendering the timings
useless; three people seemingly did not follow the instructions by
never actually grasping the boxes, and the data of one person was
not transmitted completely.

6 CONCLUSION
In this work, we provided proof-of-concept of a novel method for
shared control of an assistive robot and evaluated the idea within a
2D simulation environment. For this, we de�ned a new standardised
representation of control modes and introduced a CNN structure
to adaptively generate DoF-mappings based on camera data of the
current situation and trained it using a speci�c output layer for
conditioned covariance matrices.

The presented application is a simpli�ed proof of concept with a
larger scenario as perspective. Even though we expect the largest
impact of adaptive DoF-learning in the more complex scenario, the
results of our user study show a signi�cant decrease in execution
times even in the simple environment. We therefore conclude that
adaptive DoF-mapping has the potential to provide a novel interface
to assistive robot control and signi�cantly lower task execution
times. However, a big challenge for the robot arm application will
be communicating the DoFs to the user.

6.1 Future Work
As this work is only a proof of concept in a low-DoF environment,
the next steps will be integrating the CNN and concept of control
in a more complex 3D environment. It will also be necessary to
evaluate the control on more speci�c tasks of daily living, instead
of simple 2D box manipulation.

By addressing more complex environments, an even more �ex-
ible interface is necessary. We will therefore evaluate the use of
a joystick as an input device for our adaptive control. This will
allow users to apply continuous commands, rather than binary
button-outputs, to control the robot in the de�ned modes. This
would enable the user to not only control directions of movement,
but also control robot velocities.
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Figure 1: User Perspective of the Adaptive DoF Control, including a robot arm with wrist-mounted camera (left) and the user
interface as shown on the smart glasses (right)

ABSTRACT
Technology in general is developed to improve the lives of their
users, often by allowing them to handle individual struggles. As-
sistive robotics takes this concept to its extreme by (re-) enabling
users to physically interact with their environment in their daily
life. For a successful utilization however, a user interface is required
that allows for easy and quick interaction. Based on the promis-
ing concept of Adaptive Degree of Freedom (DoF) Control, this
paper presents a novel heuristic implementation of the underlying
principle, without relying on learning user actions.

To achieve this, a mixture distribution is obtained which ex-
presses how likely the user wants which motion. Here, every mode
of the mixture represents a heuristic behavior. Each such behavior
de�nes its own distribution of motion, as well as a weight indicat-
ing how likely it is in the current situation. The best �tting DoF is
obtained from this mixture and o�ered to the user with an interface.

This general-purpose control method has been tested in a small
technical study, the results of which show its general viability,
promising chances for a signi�cant reduction of mode changes, as
well as very good quantitative feedback by the users.
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1 INTRODUCTION
Assistive robot arms help users with physical impairments who
cannot use their own arms and hands to perform activities of daily
living (ADLs). However, robot arms are complex devices with usu-
ally six degrees of freedom (DoFs) plus at least one for the hand.
This makes designing an accessible and e�ective user interface for
the robot di�cult. On one hand, special input devices with many
degrees of freedom, e.g. a 3D mouse, exist, but they require con-
siderable dexterity which most people of the target group cannot
exercise. On the other hand, input devices speci�cally tailored for
this application, e.g. a head motion based joystick, only o�er to
input one or two degrees of freedom. Overall the challenge is the
mapping of these two input DoFs onto the seven output DoFs.
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The standard solution is a menu to switch between di�erent
assignments of cardinal DoFs, so-called modes, e.g. X, Y, Z, roll,
pitch, yaw, gripper. As the required motions in ADLs are usually not
aligned with a cardinal coordinate system, many mode switches are
required slowing down the robot’s use. For example pouring a glass
of water takes ≈ 500 ĩ with ≈ 50 mode switches[7]. Our research
investigates the idea that arti�cial intelligence shall analyse the
situation from images of a handmounted RGBD-camera and suggest
a DoF the user will probably want to use. Usually, this will not be a
cardinal one. If the computer is right, time is saved and e�ciency
gained; if the computer is wrong, the user can still manually choose
an alternative DoF.

This shared control scheme leaves the user in command and
reduces requirements for the arti�cial intelligence that does not
need to be as perfect as in pure autonomous operation. Conceptually
this can be viewed as a probabilistic prediction of Ħ (đĪ |Ė1:Ī ): How
likely is it, that the user will want the motionđĪ , given the situation
Ė1:Ī as apparent from sensors such as the camera? With the large
success of deep learning, it is tempting to learn Ħ (đĪ |Ė1:Ī ) from
recorded data, such as the DORMADL dataset[4]. However, there
are some challenges in that, which we will discuss in detail in
Section 6. Themost notable two are: The necessity to work on image
sequences Ė1:Ī instead of single images ĖĪ , as the hand camera
often simply does not see enough of the scene; And the di�culty
to incorporate the actually available geometric information from
the depth camera and kinematics.

Hence, this paper explores a more analytical alternative. The ap-
proach is to de�ne Ħ (đĪ |Ė1:Ī ) as a mixture distribution, where each
mixture mode represents an elementary behavior that is heuristi-
cally de�ned and reports its own relevance to the situation, which
in turn is used as a weight in the mixture. The behaviors can access
the current depth and kinematic data ĖĪ , as well as the position
of tracked objects even if they are currently outside the camera’s
view. The latter is a way of aggregating information over time, i.e.
computing Ħ (đĪ |Ė1:Ī ) instead of Ħ (đĪ |ĖĪ ). It is not as general as the
|Ė1:Ī notation suggests, but it addresses the most important issue,
namely to remember objects outside the �eld of view.

1.1 Contributions
The contributions of this paper are
• a set of basic behaviors of assistive robots in ADLs,
• in particular an approaching and grasping behavior based
on perceived geometry and a generic object segmenter,
• a method for probabilistic combination of behaviors in a
shared control setting,
• and a user study showing the validity of the approach as well
as opportunities to improve user satisfaction by reducing
mode switches.

The paper initially gives a short overview of relevant shared control
concepts in assistive robotics, then presents the proposed method
and �nally reports on the user study.

2 SHARED CONTROL IN ASSISTIVE
ROBOTICS

One of the most promising operation concepts for an assistive
robot is shared control. Based on the duality of control inputs

from a user and software, the concepts generally pairs user input
with an automation or similar support by a computer system (e.g.
[16] automatically handles end-e�ector rotation with the user only
controlling translational DoFs). This aims to reduce mode switches,
mental load, and execution errors by providing targeted assistance
during control operations by the user.

As assistive robotics in general aims to (re-) enable users to
perform tasks of daily living, the focus of any associated control
methodology needs to be the user themselves, therefore requir-
ing interfaces that keep the users in control whilst allowing them
to operate the high-DoFs robots[3]. As the user’s life should be
self-determined and not automated, classic automation-based robot
control systems cannot be applied here. Instead, a clear understand-
ing of user intent is vital[1] and needs to be incorporated into the
very base of any functional shared control concept. Assuming a
known intention, [11] allows to control the arm using a latent ac-
tion space, where the user’s lower dimensional control input results
in a high dimensional motion of the robot.

For this work, we will focus on the similar concept of Adaptive
DoF Control as presented in [5], which follows the idea of adaptively
adjusting the DoFs controllable by user interface, dependent on
the current situation. Generally, a classic system has a de�ned set
of modes (e.g. [12] with translational, rotational, grasping). The
adaptive DoF control e�ectively reduces the number of modes and
adjust them accordingly: By allowing more diverse DoFs, it allows
the user to control the robot along directions more appropriate
to the current situation, for example by moving the robot along a
diagonal instead of the robot-typical jagged motion of going �rst
left, then forward.

3 PROBABILISTIC COMBINATION OF
HEURISTIC BEHAVIORS

The �eld of Behavior-based Robotics follows the concept of creating
seemingly complex interactions based on minimal and very simple
sensor-driven actions (compare [2]). Generally speaking, this is
implemented by direct linking of sensor input to speci�c action,
as for example rotating to the right if light was detected on this
side. The most prominent examples of this are the tortoise robots
by W. Grey Walter[17]. Such behavior-based robots are often inten-
tionally compared to biological systems, as they can quickly react
to new sensory input.

Instead of directly generating actions, as in behavior-based robot-
ics, the robot control presented in this work follows a di�erent, but
correlated approach: Use statistical features of a set of preferably
simple behaviors as the suggested DoF in an adaptive DoF Control
(see Sec. 2).

The idea behind this control is not to select isolated behaviors,
but to instead create a combination of options via DoFs. This al-
lows for more natural and smoother motions, especially in areas of
transition, as well as blending of directions.

The associated general control structure is shown in Figure 2
and will be explained in detail during this work.

3.1 De�nition of a Behavior
In this work, a behavior Ę describes a simple action from a �nite
set of actions (such as Lifting the End-E�ector). More speci�c, it

[V]

90



Probabilistic Combination of Heuristic Behaviors for Shared Assistive Robot Control PETRA ’24, June 26–28, 2024, Crete, Greece

…

�
ÿ2ÿ1 ��ÿ0
…

��0��1��2� Ā�(�, 0)

Figure 2: Software control loop. Based on (robot-associated)
sensor input Ė , the set of behaviors þ generate sigma points
čĘ , accumulated to a probability distribution ď . The user
controls the robot along an axis of the principal components
of the latter.

is an adaptive multivariate probability distribution describing the
likelihood of motion in an Ĥ-dimensional direction đĪ relative to
the end-e�ector given the situation as observed from the sensor
readings Ė1:Ī .

ĦĘ (đĪ |Ė1:Ī ) ∼ Ę, đĪ ∈ RĤ (1)

The Ĥ-dimensional vector đĪ describes a velocity, which can be
joint angle or Cartesian and include components for the gripper.
In our case it consists of a stacked vector with translational, rota-
tional and gripper velocities in end-e�ector coordinates. SinceđĪ

contains rotational velocity not orientation, there is no problem
with singularities or need for quaternions.

In order to ease further processing, each behavior’s distribution
is de�ned as a Gaussian N(ĆĘ , SĘ ) with mean ĆĘ and covariance
SĘ . It is represented by a set čĘ of sigma points, similar to usage in
unscented Kalman �lters[15] (see Figure 3).

ĆĘ =
1
|čĘ |

·
∑
ħ∈čĘ

ħ (2)

SĘ = S(čĘ , ĆĘ ) (3)

where S(č, Ć) is the covariance of sigma points č with reference
point Ć:

S(č, Ć) = 1
|č | ·

∑
ħ∈č
(ħ − Ć) (ħ − Ć)Đ (4)

In this context, each point represents a direction of control which
originates at the end-e�ector’s tool center point. The set of points
therefore build a distribution with expected value E and covari-
ance Cov conditioned on the behavior’s underlying action and the
current situation. In addition, each behavior provides a weight Ĉ
to represent the likelihood Ħ (Ę |ĩ) of the underlying action in the
current situation.

Using this setup, the simplest behaviors consist of a single sigma
point ħ0 ∈ RĤ describing a point distribution (ĆĘ = ħ0, SĘ = 0)
of a motion with the direction according to this sigma point. For
example, a strict Forwards behaviour moves in the direction the
end-e�ector is pointing.

Yaw Rotation

Z-translation

Sigma Point Visualisation in 2D
Look Around
Simple Forward
Approach Home
u0 = M

u0 = 0
DoF

Figure 3: Illustration of the representation of Ħ (đĪ |Ė1:Ī ) as
a mixture distribution. The dots are the sigma-points of
three behaviors (red, blue, orange), the ellipses show the
corresponding mean and covariance. The black dotted el-
lipse shows the overall mean and covariance of the mixture,
the bold ellipse corresponds to ď from equation (14), and the
black arrow shows the single optimal DoF. Mixture weights
are represented by the distance of the sigma points to the
origin.

A slightly more complex behavior may, for example, have no pre-
ferred sign of the direction (which would be the case for a general
DoF) and could therefore represent this by supplying two oppo-
site points čĘ = {ħ0,−ħ0} leading to ĆĘ = 0 and SĘ = ħ0ħ0Đ . An
example of this kind of single-DoF behavior is the Look Around be-
havior described in Section 4.1, which can yaw left or right without
preference.

More complex behaviors can use arbitrary numbers of sigma
points to represent uncertainty inmultiple dimensions. These sigma
points can also depend on the environment.

If the behavior involves rotation and translation, there are sev-
eral options: Both can be combined into one sigma-point with a
de�ned ratio. This expresses that the user likely wants a combined
motion, e.g. an orbit around an object. Or there can be two sigma-
points, one with the rotation and no translation and one with the
translation and no rotation. This expresses, that the user likely
wants a translation, or a rotation or a combination of both. In the-
ory rotation and translation could also be two di�erent behaviors,
expressing, that the user likely wants no combination. However, by
the way the following processing is done, this makes no di�erence.

3.2 Combination of Behaviors as Mixture
Distribution

The di�erent behaviors are treated as modes of a mixture distri-
bution with weights, as returned by the behaviors. The rationale
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behind this view is that we assume the user wants to follow one of
the behaviors, but we don’t know which one. As the probability of a
behavior becomes larger when its better suited to the situation, the
mixture distribution has a high chance to re�ect the users intent.

Ħ (đĪ |Ė1:Ī ) =
∑
Ę∈þ

Ħ (Ę |Ė1:Ī ) · Ħ (đĪ |Ė1:Ī , Ę) (5)

=
1∑

Ę∈þ
ĈĘ

∑
Ę∈þ

ĈĘ · ĦĘ (đĪ |Ė1:Ī ) (6)

=
1∑

Ę∈þ
ĈĘ

∑
Ę∈þ

ĈĘ · N (ĆĘ , SĘ ) (đĪ ) (7)

Therefore, we can calculate the expected value Eĉ and covari-
ance Covĉ of the resulting mixture distribution directly from the
sigma points čĘ of all behaviors Ę ∈ þ as

Eĉ =
1∑

Ę∈þ
ĈĘ
·
∑
Ę∈þ

ĈĘ · ĆĘ (8)

Covĉ =
1∑

Ę∈þ
ĈĘ
·
∑
Ę∈þ

ĈĘ · S(čĘ , Eĉ ) (9)

This is shown in Figure 3 as a black dotted ellipse.

3.3 Choosing the most suitable DoFs
To be usable for the adaptive DoF control, a matrix Ā ∈ RĤĮģ of
individual DoFs needs to be generated from themixture distribution,
such that an ģ-dimensional user control signal ę ∈ Rģ can be
mapped to a �nal robot motion ī:

ī = Ā · ę + ī0 (10)
For this, the user input axis ę Ġ controls motion along the DoF

represented by column Ġ of matrix Ā .
Similar to [5], our DoF-mappingĀ hasmore rowsĤ than columns

ģ, hence not every ī can be obtained by an appropriate ę . However,
ę = Ā+ (ī − ī0), (11)

with Ā+ as the Moore-Penrose-inverse of Ā gives the input ę that
produces a robot motion Āę + ī0 as close to ī as possible.

Substituting (11) into (10), we want to minimize the expected
squared error E(∥ě ∥2) of this control

ě = ī − Ā · Ā+ (ī − ī0) + ī0 . (12)
The problem can also be viewed as minimizing the expected

squared distance from the distribution to theģ-dimensional sub-
space {Ā · ę + ī0 |ę ∈ Rģ}. Typically, it is solved using a Principal
Component Analysis (PCA)[13] with the optimum ī0 = Ćĉ and
Ā consisting column-wise of theģ eigenvectors with the largest
eigenvalues.

Ā̂ = eigen1:ģ (Sĉ ) , ī0 = Ćĉ (13)
If we were to apply this to an adaptive control, an input of zero

(i.e. a non-action of the user) would, instead of a standstill, result
in a motion of the robot according to the expected value ī0 = Ćĉ .

This is neither user-friendly, nor safe, so we change the optimiza-
tion problem to enforce ī0 = 0. For that Ćĉ Ćĉ

Đ needs to be added
to the covariance Sĉ before calculating the eigendecomposition.

Ā = eigen1:ģ (ď) , ī0 = 0, ď = Sĉ +Ćĉ Ćĉ
Đ (14)

The resulting distribution is shown in Figure 3 by the black
ellipse, with the black arrow representing the eigenvector with the
largest associated eigenvalue.

3.4 Mathematical Derivation
This section derives (14). The PCA provides the optimal solution (13)
for an optimally chosen ī0. An arbitrary centeredģ-dimensional
subspace is �tted to the distribution. This is well known[13].

As we de�ned to enforce ī0 = 0 to ensure a stationary robot
when no user input is given, we modify the derivation from [13]
for a zero-centered subspace. Letđ be an RĤ random variable. In
our system E(đ ) = Ćĉ and Cov(đ ) = Sģ , but we will keep the
derivation general. Let Ā parametrize the desiredģ-dimensional
subspace {Āę |ę ∈ Rģ}, where the columns of Ā ∈ RĤ×ģ span
the subspace and Ā is orthonormal (ĀĐĀ = ą ). In [13] there is an
additional center Ă , which is �xed to 0 in our case.

Since Ā is orthonormal, ĀĀ+đ = ĀĀĐđ is the closest point to
đ on the subspace and þđ with þ = ą − ĀĀĐ is the corresponding
error vector ě . Our optimization problem is

Ć (Ā) = ā
(
∥þđ ∥2

)
= E

(
đĐþĐþđ

)
(15)

Ā = arg min
Ā∈RĤ×ģ,ĀĐĀ=ą

Ć (Ā). (16)

The matrix þ is symmetric and idempotent (þ2 = þ = þĐ ), so

Ć (Ā) = E
(
đĐþđ

)
= E

(
đĐ (ą − ĀĀĐ )đ

)
(17)

= E
(
đĐđ

)
− E

(
đĐĀĀĐđ

)
(18)

= tr
(
E

(
đđĐ

))
− tr

(
ĀĐ E

(
đđĐ

)
Ā
)

(19)

= tr(ď) − tr
(
ĀĐ ďĀ

)
, ď = Cov(đ ) + E(đ )E(đ )Đ . (20)

This is the same expression as in [13, (19),ē = Ā,Ĕ = đ ], except
that there ď = Cov(đ ) and here ď = Cov(đ ) + E(đ )E(đ )Đ . To
conclude, enforcing ī0 = 0 leads to an additional term E(đ )E(đ )Đ
in S. The rest of the proof is the same, deriving that the optimal
Ā = eigen1:ģ (ď).

4 BEHAVIORS
For our assistive robotic system, we focussed the set of behaviors on
a generalized task of interacting with grasped objects as it is a very
common use of the arm. In addition, especially the approach and
grasping of objects holds good opportunities for assistive support,
as grasping objects often requires detailed alignment from the user,
graspable objects can be readily identi�ed and de�ned, and the task
has foreseeable goals, instead of, for example, the inverse Placement
task, which can end nearly arbitrary.

In the following, we will present the seven developed behaviors,
six of which as basic behaviors in Section 4.1, and one in more
detail in Section 4.2. However, all behaviors presented are treated
independently and equally, as they are mixed together (see Section
3.3) instead of being selected individually.

4.1 Basic Behaviors
The six basic behaviors follow a very minimalistic structure and
are designed to represent some fundamentals of robotic interaction.

[V]

92



Probabilistic Combination of Heuristic Behaviors for Shared Assistive Robot Control PETRA ’24, June 26–28, 2024, Crete, Greece

We will brie�y present each behavior with its sigma points čĘ in
end-e�ector coordinates āā.

In the following, the terms <Rot (ė) Ĝ > and <Trans (ė) Ĝ > are
used to describe unit rotations or translations along an axis ė of
a frame Ĝ , whereas <Grasp> describes the unit motion vector of a
directional movement leading to closing of the �ngers. Also, the
transformation matrix Đþ←ý maps from coordinate system ý to þ

Please note, that in this framework, motion is described by a
vector with components x, y, z, yaw (around x), pitch (around y),
roll (around z), gripper. These refer to the relative motion velocity
in end-e�ector-coordinates, not to (relative) poses, so the question
of avoiding singularities by matrices or quaternions does not arise.

Look Around. In order to reach a target position, it is often nec-
essary to reorient the gripper towards it. This constant behavior
describes the necessary rotation solely around the vertical axis,
which aims to avoid possible spillage by not changing the end-
e�ector’s alignment with the horizon. In addition, this orientation
change towards a target improves the situational awareness of
the gripper-mounted camera. Without additional information, this
behavior provides a DoF, by supplying two opposite sigma points:

čĐ
ĈĥĥġýĨĥīĤĚ =

©«
Rot

(
Đāā←þėĩě · ĬěĨĪğęėĢþėĩě

)āā
−Rot

(
Đāā←þėĩě · ĬěĨĪğęėĢþėĩě

)āāª®®¬
,

Ĉ = ęĥĤĩĪėĤĪ .

(21)

Forward. Once the end-e�ector is oriented towards the user’s
target position, a common motion is driving, relative to the end-
e�ector, forwards. For example, when preparing to grasp, users will
often initially align with the object and then move in a direct line
to reach a grasping pose. This behavior provides a constant, but
light-weighted DoF pointing outwards İ from the tool center point
of the end-e�ector. This represents the action of continuing motion
in the direction the gripper is pointing. The sigma points form a
DoF in both directions, with a tendency to go forwards:

čĐ
ĂĥĨĭėĨĚ =

©«
Trans (İ)āā
Trans (İ)āā
−Trans (İ)āā

ª®®¬
, Ĉ = ęĥĤĩĪėĤĪ (22)

Grasp. Continuing the though process of aiming to grasp an ob-
ject, this behavior supplies the actual motion of closing the �ngers.
This behavior is distinct from the others, as it is the only one a�ect-
ing this dimension. This avoids the accidental opening or closing of
the �ngers that would otherwise be possible by multidimensional
DoFs. Using the attached depth camera, the behavior reacts to the
number of close pixels ĦĮ in between the gripper that suggest the
presence of an object.

If an object is already grasped, the behavior will instead suggest
opening the gripper upon standstill, with the likelihood increas-
ing based on the time Īĩ since last movement and the distance Ěĝ
travelled since grasping the object.

čĐ
ăĨėĩĦ =



(
−Grasp

)
, Ĉ = const ·Īĩ · Ěĝ if object grasped(

Grasp
)
, Ĉ = const ·ĦĮ otherwise

(23)

Rotate Upright. In most cases, it is desirable to keep the end-
e�ector upright. This simpli�es grasping, avoids dropping or spilling
of grasped objects, and is often easier for the user to fathom. Based
on the current orientation (roll angle Ĩ , pitch angle Ħ) of the end-
e�ector, this behavior provides a rotational motion to reorient the
gripper to be upright. The yaw angle has no e�ect on this behavior.

čĐ
ĎĥĪėĪěđĦĨğĝℎĪ =

(
−

(
Rot (ĨĥĢĢ)āā · Ĩ + Rot (ĦğĪęℎ)āā · Ħ

))
,

Ĉ = |Ĩ | + |Ħ |
(24)

Lifto�. After grasping or placing an object, there is generally
a short phase of retrieval, where either the object is lifted and
positioned, or the arm is retracted from the position of the object.
In either case, it makes sense to (slightly) lift the end-e�ector, as well
as retrieve it in the general direction of the robots base Ĭāā←þėĩě

or the user. This should be a safe direction to move in most cases,
as it roughly aligns with the user’s line of sight and the robot’s
joints. This behavior diminishes with the time Īĝ and distance Ěĝ
since grasping.

čĐ
Ĉğ Ĝ Īĥ Ĝ Ĝ =

(
Trans (ĬěĨĪğęėĢ)āā + Ĭāā←þėĩě

)
,

Ĉ =

{
− const ·Īĝ · Ěĝ if object grasped
0 otherwise

(25)

Approach Home. As certain pre-de�nable positions have recur-
ring meaning, this behavior provides a direct approach towards a
home position, weighted by the distance and relative orientation
of the gripper. It’s individually comprised of a rotation ą (ℎĥģě)
aiming to align the end-e�ectors z-axis with the target position,
and the translational displacement Ĭℎĥģě←āā of the target pose to
the end-e�ector.

For a wheelchair user, one home pose might be above their
wheelchair table, so that they can easily retrieve objects to there.
For a detailed explanation of ą and Ĉ in this case, please see Sec.
4.2.

čĐ
ýĦĦĨĥėęℎĄĥģě =

(
ą (ℎĥģě)
Ĭℎĥģě←āā

)
(26)

4.2 Approach Object Behavior
The Approach Object behavior actively scans for graspable objects
in range and provides individual behavior distributions for each of
them. Individually, each such distribution represents the action of
approaching the speci�c object. However, in combination they pro-
vide a distribution of possible directions that best allow to approach
the group of objects. This way it actually encapsulates multiple
similar behaviors (one for each object stored) which are aggregated
in this section. For a detailed analysis of the resulting performance
synergy, see Section 4.3.

In general, per detected object ĥ the behavior provides two sigma
pointsčýĦĦĨĥėęℎċĘ ĠěęĪ (ĥ ) and corresponding weights ĈĨ

ĥ , ĈĬ
ĥ . The

sigma points separately describe translation to, and orientation
towards, the goal, as it is assumed that users will perform each
of them stepwise one after the other (initially rotate towards the
object and approach only then):
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čĐ
ýĦĦĨĥėęℎċĘ ĠěęĪ (ĥ ) =

(
ą (ĥ)
Ĭāā←ĥ

)
,

Ĉą
ĥ = Ăą ( |Ĭāā←ĥ | , |ą (ĥ) | , Īĥ )

ĈĬ
ĥ = ĂĬ ( |Ĭāā←ĥ | , |ą (ĥ) | , Īĥ ) ,

(27)

where the rotational component ą (ĥ) is the angle between the
forward-pointing z-axis of the end-e�ector and the vector towards
the object and is calculated as

ą (ĥ) = ∠
(
Trans (İ)āā , Ĭāā←ĥ

)
. (28)

Perception. The sensory input of this behavior is structured around
the FastSAM[18] implementation of the Segment Anything Model
(SAM)[10]. This neural network model is designed to isolate seg-
ments in a color image and can basically be run on arbitrary images.
We use the model as-is and actively refrain from doing any model
adjustments, as we want the underlying generalistic behavior.

Using the color images generated by the wrist mounted RGBD
camera[8] (see Figure 1), the SAM model provides image masks
for a fairly large number of possible objects it detects. As not all
the generated image segments are valid real-life objects, we post-
process each image segment in order to interpret it as an object
and generate a reasonable target.

Using the camera-proved depth data, the 3D physical extends of
the objects are calculated based on a camera project matrix and the
rotated minimal bounding box. In addition, the direct neighboring
area around the objects is checked to verify, that the segment pro-
trudes su�ciently from the background to be able to be grasped;
In other words, it checks the sides of the objects for chasms that
are deep enough for the �ngertips. The depth data is also used to
calculate the relative object pose.

Based on this data, objects are treated as targets if they are within
reach, have grasp-appropriate physical extends, as well as having
su�cient chasms to the objects sides for the gripper to protrude
during grasping.

Each such object ĥ is persistently stored, so it is remembered
even when it falls outside the camera’s �eld of view. The weights
Ĉą
ĥ and ĈĬ

ĥ of an unseen object however decrease over the time Īĥ
since the object was last seen, so to say forgetting the object.

Sigma Points. For every object ĥ remembered, a sub-behavior is
generated that handles direction orientation ą (ĥ) and approach
Ĭāā←ĥ towards the object.

For this, the weights are regularly updated using the functions
Ăą ( |Ĭāā←ĥ | , |ą (ĥ) | , Īĥ ) and ĂĬ ( |Ĭāā←ĥ | , |ą (ĥ) | , Īĥ ) respectively.
These are simple functions calculating a relative estimate of the
likelihood of the user aiming to grasp the object in this current
situation. In our setup, they were designed to embrace objects
that are close and aligned with the gripper, resulting in a selection
dynamic (see Section 4.3). In detail, they are:

ĂĬ ( |Ĭāā←ĥ | , |ą (ĥ) | , Īĥ ) =

Īĥ ·
(
(Ĭmax − |Ĭāā←ĥ |) ·

(
1
2 ((cos |ą (ĥ) | + 1))

)3) (29)

Ăą ( |Ĭāā←ĥ | , |ą (ĥ) | , Īĥ ) = Ĝ̂Ā · ĂĬ ( |Ĭāā←ĥ | , |ą (ĥ) | , Īĥ )

where Ĝ̂Ā =

{
1 if |ą (ĥ) | > Ā

ĜĀ otherwise,
(30)

where Ĭmax is the maximum distance reachable by the robot arm,
and Ā is a threshold angle, belowwhich the relative likelihood of the
rotate-towards sigma point is reduced by a factor of ĜĀ . The latter
serves to favor the translational component in the �nal approach
rather than optimizing orientation.

The Approach Home behavior (see Sec. 4.1) follows the same
principle and Ĉ-scaling.

4.3 Synergy in Shared Control
The presented behaviors can obviously not be used as a baseline
for automation; The system’s information is only very limited with
respect to the environment and the intent of the user. In general,
there is too much uncertainty for an automation task.

However, as discussed in Section 2, automation should not be the
goal of assistive control strategies. Instead, the presented control
was developedwith the speci�c user requirements and relies heavily
on interaction of the user, who not only selects the current motion
to perform, but instead smoothly controls through them.

As each behavior evaluates its own likeliness and adjusts its
weight Ĉ accordingly, the weighted combination of the behaviors
provides a quickly adapting set of DoFs. From the perspective of
the user, the suggested DoFs barely make any decision between
options, but instead provides the user with the means of selecting
one themselves.

Ī0 Ī1 Ī2

Figure 4: DoF Selection Example: Two star-shaped red targets
and a 2D-robot at 3 points in time. For each point in time,
a green arrow represents the suggested DoFs that are most
likely given the situation.

A simple scenario showcasing these principles can be seen in
Figure 4:

Initially, at Ī0, the robot is far away from the targets. As the
system has no information about which object the user prefers, it
simply provides the direction towards the center of the targets, as
this will get them closer to their actual goal. This is a direct result of
the Approach object behavior for each target: The two translational
components add up to a clear direction, whereas the rotational
components balance out each other and only provide a less likely
unsigned DoF.

Assuming the user follows the suggested motion until Ī1, the
robot has reached a point where the summed translational compo-
nents have decreased su�ciently, such that they are now smaller
than the balanced rotational element. In other words, the system
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assumes it’s no longer e�ective to drive forward, but instead orient
toward one of the targets. The user must not obey this, but can
choose to select a new DoF at any point.

At Ī2 the user has obviously continued controlling the robot in
a translational manner and has only just started rotating slightly
to the left. This orientation towards the leftmost target is however
su�cient, such that the system assumes that they prefer this target.
As a result, it provides a direct translational approach motion. This
is a result of the Ĉ-scaling of Ăą and ĂĬ .

In summary, the system relies on the user to make their selection.
In the setting described above, if the user had not made any decision
to switch, the control would have missed the targets and passed
through the center. The systems assist only once the user makes a
clear enough decision. The same concept generalizes to an arbitrary
number of targets, as well as e�ects from the other behaviors.

As long as the user input devices supports less input DoFs than
the robot has (ģ < Ĥ), this method of control cannot be complete
(i.e. there are poses the user cannot reach). To solve this, a user
interface with a fallback option of controlling in the cardinal DoFs is
suggested. This way, the adaptive DoF control only extends existing
controls and does not restrict the user’s options. See the media
attachment for a video example.

Seemingly contradictory, this setup of behaviors does not in�u-
ence the robot safety. The only but essential rule is that if there is
no command from the user, the robot performs no motion. In this
setting and with this type of robot, contact with the environment
necessarily needs to be possible (be it for object interactions, or
tasks like scratching), therefore no speci�c obstacle avoidance is
implemented. This is left to the user.

5 TECHNICAL USER STUDY
To verify the technical usability of the control, we conducted a small
user study in a laboratory environment using a Kinova Jaco Gen2
7DoF assistive robot arm[9], an Intel Realsense D435[8] and a ros-
based software stack. As this was designed as a proof of technical
concept, not an end-user compatibility scoring, we opted to test
the control with able-bodied participants.

Based on the scenarios from [4], we selected a simpli�ed super-
market shelf scenario. Two objects were placed on a shelf and, using
the robot, the users were tasked to retrieve the objects to a basket
on a nearby table, which was close to the stored Home position.
Each user could select the order in which to retrieve the objects, so
the system could not be adjusted to the speci�c setting. After each
successful retrieval, the robot was reset to a starting pose to make
the trials comparable.

We developed a user interface (UI) for our adaptive DoF control
on the same principles as the munevo DRIVE[14] system for con-
trolling an electric wheelchair with head gestures through a Google
Glass[6]. This includes mode selection by �icking or nodding mo-
tions of the head, and control inputs by tilting the head. The UI can
be seen in the top right of Figure 1. The DoF currently controlled is
shown in the center, with the new suggestion being highlighted on
the side. The cardinal DoFs can be reached by nodding. DoFs are
represented with a set of simpli�ed 3D arrows. The use of this inter-
face aimed to provide a sense of a realistic interaction experience
for our study participants.

During the study, each participant compared our control to the
use of only the cardinal control, both using the same interface.
The order of controls was switched for each user. In addition to
extensive explanations, the users were also given time to get used
to both control methods, and a test task (grasp a held bottle) for
introduction. For the latter, they were verbally guided and assisted
by the study administrator.

5.1 Results
Our user group of 18 people was aged between 20 and 34 years
(25.8 ± 4.2). Of these, 8 reported their gender as female, 8 as male,
and none as non-binary, with two choosing not to reply. All test
subjects were able-bodied and reported no personal context to the
�eld of care. Most of them (15) regularly used joysticks or keyboards,
with 6 users working with robots on a weekly basis.

For the evaluation, we examined the time between the �rst mo-
tion of the robot and the start of opening the �ngers to release the
object at the target position. Figure 5 shows the execution times
over all users with either control method, separated by execution or-
der. For the �rst object (i.e. when there is very little experience with
the control), it can be seen that they are slower with the adaptive
control. Even though only slightly better than the classic approach,
there is a noticeable improvement of the adaptive duration for the
second object, when compared to the �rst. This is independent of
the order the controls were presented in, although the e�ect is more
prominent if classic was used �rst.

Classic

Adaptive

60 80 100 120 140 160 180
time in s

Classic

Adaptive

Task Completion Time for 1st object (top) and 2nd object (bottom)

Figure 5: Task Completion Times of all users, separated by
object

Another factor for the usability of an assistive control concept
is the necessity of mode switches. Depending on the interface and
the physical abilities of the user, mode switches can be di�cult,
exhausting, or time-consuming. It is therefore an important metric
of the system. Figure 6 shows the number of mode switches for each
control, again separated by execution order. This clearly shows a
signi�cant reduction in mode switches for the adaptive control for
both objects.

A slight variation of this can be seen in Figure 7, which shows the
number of user-interface selections necessary to reach the actual
modes to control in. This di�ers, as the limited input options of the
user interface requires the user to skim through various options
to reach the desired control mode. The di�erence between classic
and adaptive is even greater, showing reduced necessary skimming
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Classic

Adaptive

5 10 15 20 25
number of mode switches

Classic

Adaptive

Mode Switches for 1st object (top) and 2nd object (bottom)

Figure 6: Number of Mode Switches of all users, separated by
object

with the adaptive control. A clear training e�ect can be observed by
the reduction of variability (broader range of interquartiles) from
the �rst object to the second.

Classic

Adaptive

5 10 15 20 25 30 35
number of ui selections

Classic

Adaptive

UI Selections for 1st object (top) and 2nd object (bottom)

Figure 7: Number of UI Selection Gestures of all users, sepa-
rated by object

The qualitative user responses had a clear preference: 14 chose
the adaptive control and only 4 the classic. The users gave di�erent
reasons for this: Some users reported the adaptive control to be
simpler, even if they require more familiarization, whereas oth-
ers simply felt the visual user interface more compact (less mode
options), therefore allowing for a better overview. The latter also
caused for fewer necessary mode switches, which were sometimes
physically exhausting for users. Multiple users explicitly praised
the diagonal options of the adaptive control, assisting to move di-
rection to a target, which in turn was an issue for a smaller subset,
which had di�culty subconsciously grasping the directions of the
more complex arrows.

For this user group, the classic side had a clear advantage, as
one did not need to understand the arrows, but could instead learn
the modes and positions by heart for this control. In addition, one
user reported that the directions suggested by the adaptive control
interface often did not �t his wishes.

The conducted NASA-TLX questionnaire was not conclusive: All
categories showed very similarly distributed user responses. Based
on the interviews, this can be traced back to di�ering perspectives.
For example, for some users the mental demand of the adaptive
control was higher because the arrows changed and one had to

adapt, whereas others found this to be a reduction of mental load,
as the more direct options removed intermediate steps and allowed
for more streamlined executions. The physical demand was mostly
identical, with some users reporting less strain on the adaptive
control because of the reduction in mode changes. The results of
the NASA-TLX can be seen in Figure 8.
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Figure 8: NASA-TLX User Responses

6 COMPARISON TO A HYPOTHETICAL
END-TO-END LEARNING APPROACH

It is tempting to learn the desired Ħ (đĪ |Ė1:Ī ) end-to-end from data.
Indeed, in previous work we recorded the DORMADL dataset[4]
exactly for this purpose. However, investigation of the data revealed
considerable complications for such an approach. These motivated
our investigation into a more classical engineering alternative re-
ported in this paper and shall be discussed here.

First, as the camera is mounted slightly behind the hand (Fig. 1),
it often sees only a small part of the scene. However, the motion
is often motivated by something outside the view, e.g. when tran-
sitioning from one object to another on a table. This requires the
system to memorize object positions to e�ectively predict motion.
In our system this is done analytically with depth data and forward
kinematics. An end-to-end learned system would have to learn this
connection, which is not easy and of little value, since it is well
described analytically. It would also require operating on image
sequences not single images.

Second, we observed that users exhibit a large degree of arbi-
trariness in how they perform a certain motion. This makes it hard
to predict. It is actually not necessary for the application to predict
precisely which motion variant is desired as any useful variant
is �ne. However, this is not captured by typical least-squares or
maximum likelihood losses.

Third, we observed that the presumably well predictable motions
are reaching motions to grasp an object. As we showed, these are
low-hanging fruits that do not need deep learning but are well
realized geometrically.

Forth, an advantage of deep learning is that it would implicitly
learn to understand the environment from images, which cannot be
done well analytically. However, as shown in our system, this part
can be covered by a network with a more specialized role (segment
anything) that has actually been trained on much more data.
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Lastly, as most often, the analytical approach is more transparent,
because it is build of parts that have a human de�ned interface. It is
also easier adaptable, because the heuristic de�nition of behaviors
can be changed, while changing a learned one requires collecting a
new dataset re�ecting the desired changes in behavior.

Overall, while we don’t want to rule out an end-to-end learned
approach, we claim that the proposed method is well suited for the
considered task.

7 CONCLUSION
We have presented a system that suggests degrees of freedom to
the user of an assistive robot arm. It models the distribution of what
motion the user probably wants to do as a mixture of heuristically
de�ned behaviors. Some of these, in particular the approaching and
grasping behavior, incorporate sensor data, mostly in a geometric
way. This has been shown as a viable alternative to an end-to-end
learning idea.

The technical user study showed the viability of the system in
a realistic scenario with a promising perspective on mode switch
reduction. Also, the qualitative feedback of the users displayed clear
preferences for the new control system, especially during the direct
approach of objects.

Future work is to investigate, whether more general behaviors
can be implemented this way and whether they are actually pre-
dictable to an extent that allows suggesting a DoF to the user. Also,
the study needs to be repeated with the targeted user group.
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Adaptive Control in Assistive Application - A Study Evaluating Shared
Control by Users with Limited Upper Limb Mobility

Felix Ferdinand Goldau1,◦ and Max Pascher2,3,◦ and Annalies Baumeister4,◦ and
Patrizia Tolle4 and Jens Gerken2 and Udo Frese1

Abstract—
Shared control in assistive robotics blends human autonomy

with computer assistance, thus simplifying complex tasks for
individuals with physical impairments. This study assesses an
adaptive Degrees of Freedom control method specifically tai-
lored for individuals with upper limb impairments. It employs
a between-subjects analysis with 24 participants, conducting
81 trials across three distinct input devices in a realistic
everyday-task setting. Given the diverse capabilities of the
vulnerable target demographic and the known challenges in
statistical comparisons due to individual differences, the study
focuses primarily on subjective qualitative data. The results
reveal consistently high success rates in trial completions,
irrespective of the input device used. Participants appreciated
their involvement in the research process, displayed a positive
outlook, and quick adaptability to the control system. Notably,
each participant effectively managed the given task within a
short time frame.

I. INTRODUCTION

In 2023, the World Health Organization (WHO) estimated
that approximately 15% of the global population lives with
some form of disability [1], many of whom experience
substantial, often permanent, reductions in limb usage. The
resulting decreased mobility can severely restrict the ability
to perform Activities of Daily Living (ADLs) without ex-
ternal assistance, necessitating the almost constant presence
of caregivers [2]. However, constant caregiver presence is
generally not desirable. Research by Pascher et al. demon-
strated that individuals with physical disabilities strongly
wish for personal space and alone-time [3], which might
be facilitated through the use of dependable robotic assis-
tance [3]. Similarly, a comprehensive review by Kyrarini et
al. highlighted the beneficial effects of assistive robotic tech-
nologies — known as cobots — in aiding individuals with
mobility issues [4]. Consequently, the decreased reliance on
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caregiver assistance supports the regaining of independence
and addresses expressed wishes for self-determination.

However, introducing robots capable of (semi-
) independent actions presents new challenges, potentially
adding stress for the end-users if not properly considered
during the design phase [5]. Pollak et al. [5] noted reduced
sense of control felt by users when operating a cobot in
autonomous mode, while switching to manual mode allowed
participants to regain a sense of control and significantly
lower stress levels. These findings are supported by Kim
et al., who reported significantly higher satisfaction in the
group using manual cobot control [6]. Unlike routine tasks
in industrial settings, such as assembly jobs [7], the assistive
care environment demands flexibility as cobots are tasked
with a variety of support functions [8]. Managing robots in
these scenarios remains demanding and requires continuous
user involvement for efficient and safe system operation. A
central issue arises from the types of robots employed, as
multiple Degrees-of-Freedom (DoFs) either require complex
multidimensional input devices or involve time-extensive
mode switching (e.g., [9], [10]). The former option is often
unmanageable for individuals with mobility impairments,
while the latter leads to increased task completion times [11].
Consequently, these prevailing control strategies do not suit
the needs of the intended audience.

In addressing this, adaptive DoF control merges semi-
autonomous operations with manual flexibility, dynamically
adjusting a robot’s DoFs for simplified interactions based
on the environment. Introduced by Goldau & Frese, this
strategy enhances support for ADLs, outperforming tradi-
tional controls by using a Convolutional Neural Network
(CNN) to select optimal DoFs from real-time environmental
feeds [12]. Further research by Pascher et al. demonstrated a
reduction in mode switching, indicating a notable improve-
ment over standard controls [13], [14], [15] and explored
different input devices for this adaptive control [16]. Goldau
& Frese also confirmed the adaptive approach’s advantages
through heuristic behavior studies in a laboratory setting [17].
Nonetheless, the real-world applicability and impact of these
advances, especially in user studies targeting specific groups,
are yet to be fully examined. Building on these insights,
the present study assesses the acceptance of adaptive control
among the actual target group — people with limited upper
limb functionality — through three select input devices.

Our contribution is two-fold: 1) we present a user study
with the target group conducted at an international trade fair
for rehabilitation and care, evaluating a novel shared control

[VI]

98



approach, and 2) provide an in-depth analysis of control
performance data (average task completion time and average
number of control switches) and subjective feedback (per-
ceived workload, technology acquisition, and acceptance),
highlighting the concepts’ adaptability to various devices.

II. ASSISTIVE ROBOTICS IN DOMESTIC CARE

When designing assistive technologies for vulnerable user
groups, such as people with disabilities, efficient human-
robot collaboration becomes paramount. Assistive robotics
have the potential to significantly enhance independence
and improve care by assisting and supplementing caregivers,
thereby enhancing the quality of life for those in need [6],
[18], [19], [20]. Research attention has increasingly focused
on how assistive robotic systems can assist individuals with
motor impairments. Notably, projects like Robots for Human-
ity led by Chen et al. [21] and seminal studies like by Fattal
et al. [8] explored the feasibility and user acceptance of these
technologies. While the overarching aim is to fully integrate
individuals with severe motor impairments into professional
and social contexts, current assistive technologies predomi-
nantly target the performance of ADLs [22]. These activities
range from basic tasks like eating and drinking to more
complex ones, including grooming and leisure activities [23].

Continual research efforts are expanding the capabilities of
cobots and enhancing task performance. For instance, Gal-
lenberger et al. utilized camera systems and machine learning
in an autonomous robotic feeding system [24], while Canal
et al. introduced a learning-by-demonstration framework for
feeding tasks [19]. Both methods demonstrate how robotic
arms can execute (semi-)autonomous tasks with minimal
user intervention, thus underscoring the potential benefits
of assistive technology. Implementing safe, user-friendly
robotic solutions can fundamentally improve the quality of
life for individuals needing assistance while ensuring that
the user retains control [25]. This increased independence is
particularly vital for those with motor impairments, reflecting
their desire for more privacy and prolonged alone time [26].

Drolshagen et al. found that individuals with disabilities
readily adapt to working alongside cobots, even in close
quarters [27]. Moreover, people with motor impairments
tend to positively receive robotic assistance, especially when
their specific needs are considered during the design pro-
cess [28], and when sufficient oversight ensures a sense of
security [29]. Thus, effective communication of the robot’s
motion intent emerges as a crucial factor in achieving high
acceptance among end-users [30]. These findings align with
Beaudoin et al.’s investigation into the long-term usage of
the Kinova Jaco, a notable advancement in assistive technol-
ogy [31].

A. Shared Robot Control Applications

The appropriate level of autonomy in assistive robots
attracts attention in current research. Highly autonomous
systems (e.g., [32]), which minimize user interaction to mere
oversight, can induce stress [5] and feelings of distrust among
users [33]. Conversely, for users with certain degrees of

impairment, only minor adjustments to the users’ other-
wise manual control input [34] can pose significant chal-
lenges [21], [35]. Shared control provides a middle ground
by integrating manual user operation through standard input
devices with algorithmic software assistance to adjust the
resulting motion [13]. This approach effectively mitigates
concerns associated with purely autonomous systems and
manual controls [36]. In shared control, there is a collab-
orative effort between the user and the robot, empowering
individuals with motor impairments to actively participate
in their care. By balancing autonomy and user involve-
ment, shared control systems offer a more acceptable and
comfortable experience for individuals relying on assistive
technologies [37], [38], [39].

A distinct approach is the adaptive DoF control system
proposed by Goldau & Frese [12]. This system isolates the
most likely DoFs of a robotic arm based on the current
situation and aligns them with a low-DoF input device.
Effectively, this improves the classic mode-selection process
by replacing the selectable modes with situation-adaptive
directions of movement, allowing the user to easily control
the arm. The process involves attaching a camera to the
robotic arm’s gripper and utilizing a CNN trained on ADLs
performed by individuals without motor impairments [12],
akin of the learning-by-demonstration method used in au-
tonomous robots [19]. Furthermore, this CNN-based ap-
proach offers extensibility as it can be trained to distinguish
between different situations, enhancing its practicality for
everyday use. In their proof-of-concept study, which involved
a 2D simulation environment featuring a robotic gripper
representation and a target object, Goldau & Frese observed
faster task execution with the proposed system than man-
ual controls. However, users perceived the shared control
approach as complex, expressing a preference for a more
extensive training phase, even in this low-DoF environment.
Their findings underscore the need for more intuitive and
responsive interaction feedback when controlling the robot.

Pascher et al.’s Adaptive DoF Mapping Control (ADMC)
concept draws inspiration from Goldau & Frese’s approach
but extends it to three dimensions [13]. This extension
increases the potential DoFs, enabling a more precise realiza-
tion of ADLs. In their case studies, they show the advantages
of an adaptive against a non-adaptive control approach [15],
[14] and explored different input devices for the ADMC
concept [16]. Following the transition to 3D, Goldau & Frese
expanded on their previous control by presenting a functional
3D prototype [17]. Here, instead of generating the DoFs with
a CNN, they switched to a heuristic behavior-based approach.
Using non-disabled participants in a laboratory environment,
they showed the general viability of their control method, as
well as the users’ preferences for their novel approach.

However, as the adaptive DoF control is yet to be evaluated
with the target group in a realistic real-world scenario,
its general accessibility and user acceptance remains to be
assessed. Due to the diverse limitations of the target demo-
graphic, this accessibility coincides with a generalizability to
different input devices.
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III. TECHNICAL CONCEPT

In line with the adaptive control principles discussed
in Section II-A, our study implemented a behavior-based
heuristic control with a focus on assessing its applicability
across various input devices and the acceptance within the
targeted user group. The shared control approach adopted
here is based on behaviors comparable to [17], albeit with
a modification that incorporates known initial object poses.
This adaptation aims to mitigate detection errors within the
complex and cluttered environments typically encountered in
trade fairs.

Unlike prior studies evaluating the usability of the pro-
posed adaptive control concept [15], [14], our experimental
setup differs by concurrently integrating multiple approach-
and graspable objects, as opposed to a single defined target.
Our implementation is designed to operate without a pre-
determined sequence of actions, allowing users flexibility in
interaction. To facilitate a practical assessment, we modified
the research-oriented AdaptiX [13] framework into a concise
standalone Robot Operating System (ROS)-based system
without a Mixed Reality (MR)-middleware. Similar to [17],
our system uses a smart glass as a visualization interface,
which we further augmented with options to use buttons or
a joystick as input devices.

IV. STUDY METHOD AND MATERIALS

To assess the effectiveness of our adaptive control strategy,
we conducted a supervised evaluation with a cohort of 24
participants. Our approach focused on qualitative data to gain
individual insights into the broader implications of this di-
verse and challenging-to-generalize user group. Additionally,
we supplemented this qualitative analysis by quantitative data
derived from execution measurements and a NASA Raw-
Task Load Index (Raw-TLX) questionnaire [40].

To achieve high external validity, we exclusively recruited
participants from the target group and conducted the study
in a relatively realistic environment, opting for a trade fair
instead of an artificial laboratory setting. Participants used
our adaptive control system with a designated input device
to perform a simple task with a robot arm, after which
they provided feedback on their experiences. The experiment
primarily aimed to gather qualitative insights from the target
group regarding the adaptive control strategy, supplemented
by subjective questionnaires and performance data measure-
ments.

A. Study Design

The study employed a between-subject design due to
considerations of participant vulnerability (e.g., differing
levels of fatigue) and diverse capabilities (e.g., only head-
control being an option for some participants). Consequently,
we used the input device as an independent variable, seg-
mented into two distinct conditions: (1) Head-Control and
(2) Joystick. Additionally, participants from both groups were
asked to sample a third condition: (3) Assistive Buttons.

The evaluated input devices were selected to be suffi-
ciently distinct from one-another to accommodate a wide

range of users, with the Joystick and Head-Control requiring
finger and head dexterity respectively, whereas the Assistive
Buttons could be placed to be used with any body part.
However, matching devices to participants’ capabilities re-
sulted in imbalanced data (nHead-Control = 16, nJoystick = 8,
nAssistive Buttons = 16). It is important to note that user
familiarity with the devices varies greatly, as joysticks and
buttons are more common than head-based controls.

To facilitate an in-depth analysis of immediate user per-
ceptions, we recorded both audio and video during the
study. Additionally, we evaluated the following dependent
variables:

• Average Task Completion Time: The time to approach
an object, pick it up, and position it at a designated
target area was recorded (in seconds) for each trial.

• Average Number of user interface (UI) Switches:
Within each trial, we documented instances of UI
switching, i.e., selections within the UI independent of
robot action, activated through a head-motion or button-
press on the control device.

• Average Number of Mode Switches: We measured
mode switching, i.e., successful UI switches followed
by a user input to move the robot along a new DoF.

• Perceived Workload: Following the completion of
each condition, we assessed the six dimensions of
the Raw-TLX questionnaire [40] to gauge perceived
workload.

• Level of Autonomy: Upon completing all trials, we
asked participants to identify their preferred level of
autonomy on a Likert-scale 1–10 (1: manual control,
10: full autonomy).

Following the practical part of the study, we engaged
participants with several open-ended questions to explore
their experiences, understanding of the control method, inter-
pretation of directional cues, and any significant issues they
encountered.

To extract participants’ perceptions regarding the different
control methods, the study’s video and audio recordings were
analyzed independently by three researchers through open
coding. The resulting open codes were organized into affinity
diagrams and further structured into themes, as detailed in
Section V-B.

B. Hypotheses

Overall, we expect the adaptive control method to be well
perceived by the target group, as long as the controls prove
to be functional with the chosen input device. To assess this,
we defined three hypotheses:
H1: After a short training, our target group of wheelchair-

users with limited upper limb mobility is able to
repeatedly use an adaptive DoF control for a grasp-
and-retrieve task.

H2: Adaptive DoF control is perceived as promising and
accessible by the target group to perform tasks of
ADLs.

H3: The concept of adaptive control generalizes to different
input devices.
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Fig. 1: Study apparatus at the trade fair, illustrating the
placement of user, table, and shelf, as well as the UI
visualized on the smart glasses (top left)

(a) (b) (c)

Fig. 2: Input devices used in the study: (a) Google Glass
EE2 [47], (b) custom-built Joystick, and (c) Assistive Buttons

C. Apparatus

The system was assembled on a mobile nightstand, sim-
ulating a setup typically found in nursing homes or hos-
pitals (cf. Figure 1). The central component was a Kinova
Jaco Gen 2 [41] 7-DoF assistive robotic arm with an Intel
Realsense D435 [42] color-and-depth-camera mounted to
its end effector. As detailed in Section III, we evaluated
multiple user input devices: A Google Glass EE2 [43] with
a customized Munevo Drive [44] software was used as the
smart glasses, whereas an Xbox Adaptive Controller [45]
with external Assistive Buttons and a custom-built Joystick
served as hand-controlled input devices. The devices are
depicted in Figure 2, with the UI-visualization shown in the
top left of Figure 1. To minimize external influences in the
busy trade fair environment, all devices communicated via
wired connections to a ROS [46] interface of an embedded
Linux computer. The only exception was the glasses, which
were connected via a short-range Bluetooth connection.

D. Participants

We focused on a target demographic of wheelchair users
with reduced upper-limb mobility and the capability of
wearing and using smart glasses. Consequently, individuals
were excluded if they had vision impairments that made
the glasses inaccessible or if the glasses did not fit (e.g.,
due to custom headrests). In total, 24 individuals — 12
men and 12 women — with varying motor impairments
participated in the study. The age range of participants was
19 to 68 years, with an average age of 43.75 years (SD =
14.68). All participants relied on wheelchairs and had diverse
health diagnoses, including spinal muscular atrophy, ALS,

DMD, mitochondrial disease, AMC, MS, ICP, stroke, GNE
myopathy, Charcot-Marie-Tooth syndrome, MMN, spina bi-
fida, and generalized dystonia. One participant reported fully
functional arms and hands, 20 had limited arm and hand
function, and three had complete loss of arm and hand
function. Five participants had prior experience with an
assistive robotic arm, another five had tested such an arm
in the past, and 14 had no prior experience. Additionally,
two individuals regularly used smart glasses, four had tried
them before, and 18 had never used such glasses.

E. Procedure

The study was conducted at the REHACARE,1 a leading
international trade fair for rehabilitation and care in Düssel-
dorf, Germany. This location allowed for easy recruitment
from the target group, as they are common visitors. The
experiment setup was designed as part of a regular booth,
with the participants facing a shelf to minimize visual
distractions. Before the start, participants were thoroughly
briefed about the research objectives and the to-be-completed
tasks. Each participant provided explicit, informed consent
to engage in the study and agreed to video/audio recording
and documentation of all pertinent data.

The study administrator collected a socio-demographic
questionnaire, monitored the experiment via a laptop, and
provided instructions to participants on how to use the
hardware and navigate the basic functions of the study
environment. This followed the steps:

1) The participant engages in a training trial with one-by-
one assistance from the study administrator.

2) 1–4 measurement trials (depending on individual ca-
pabilities) for the assigned condition are conducted.

3) Based on personal capabilities, a subset of participants
tested the Assistive Buttons as an alternative input.

4) Finally, we conducted a Raw-TLX questionnaire [40]
and a semi-structured interview.

The study concluded with a debriefing session, with a total
average session duration of 60 minutes. Participants were
compensated with a 10 EUR food voucher for their time
and engagement, a detail that was not disclosed beforehand.

F. Experimental Setting and Task

A small basket was placed as a target drop zone on a
table in front the participant, thus allowing for a design
that does not specify the object’s final orientation. From the
user’s perspective, four objects were placed inside a 2x2 shelf
behind the table. The robotic arm, attached to the table, could
reach both the shelf spaces and the basket. For each trial,
the participants were tasked with guiding the robotic arm
from its initial position to grasp an object from the shelf
and put it into the basket. Upon successful placement, the
trial concluded, and the object was removed from the basket.
The robot, operated by the study administrator, returned
to its starting point before starting a new trial for the

1REHACARE trade fair. https://www.rehacare.de, last retrieved
June 7, 2024.
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Fig. 3: Box plot of execution procedure measurements over
all users with NHead-Control = 36, NJoystick = 17, NButtons =
16. The bold line represents the median

remaining objects on the shelf. Neutral box-shaped objects
were selected to prevent bias and ensure consistency across
trials.

V. RESULTS

The study covers 81 measured trials (24 participants ×
1–4 trials), with the training trials being excluded from
analysis. To accommodate user capabilities, two thirds (16)
of the participants evaluated the smart glass-based Head-
Control, while eight used the Joystick. Additionally, 16 users
evaluated Assistive Buttons as a second input method after
their first trails.

A. User Procedure Analysis

As each trial begins at the same robot pose and involves
only a single object with a pre-defined pose, we were able
to analyze the user execution procedure for a singular task
of approaching, grasping, and retrieving a single object.
After excluding runs with external interruptions or major
complications, we recorded 69 trials (36 Head-Control, 17
Joystick, 16 Assistive Buttons).

For each device, we recorded the overall task execution
time, the percentage of time actually spend moving the robot,
as well as the number of mode and UI switches. Figure 3
shows an overview of the collected data for all users and
devices. Figure 4 presents the subjective Raw-TLX scores.
Each dimension is displayed as a box plot, separated by the
type of control (Head-Control or Joystick) initially employed
by the user.

B. Thematic Content Analysis

Throughout the trials and interviews, the participants
verbalized their experiences, including challenges, moments
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Fig. 4: Results of the NASA Raw-Task Load Index question-
naires

of success, and improvement suggestions from their per-
spective. The audio recorded during these sessions was
transcribed for thematic content analysis. Since participants
were specifically asked to reflect on their study trials, the
analysis primarily focuses on their individual experiences and
perception of the adaptive control.

1) Learning the Control: Participants experienced varying
learning curves, with only a minority finding the adaptive
control intuitive at the beginning. Instead, most found the
control to be initially strenuous, before improving their
opinion after a short training period. Once “the concept was
understood” (P11), usage became easier and more successful.

The primary challenge referenced by all participants was
confronting the unfamiliar technology, especially using head
movements in conjunction with smart glasses to control a
robotic arm via augmented reality. Difficulties were noted
even by those who used a joystick for input and the glasses
solely for visualization. Participants had to quickly learn new
skills and adjust to the adaptive control system, leading some
to report feeling mentally overstrained at times.

The two participants already familiar with smart glasses
and head movements to control their wheelchairs experienced
the least difficulty in learning to control the robotic arm.
In contrast, participants accustomed to using a robotic arm
with a traditional joystick struggled to transfer their previous
experience to the new system, regardless of whether they
controlled the robot with head movements or a joystick
during the trial. This difficulty was partly attributed to the
nature of the shared control system, which imposed adaptive
motions rather than the traditional fixed cardinal motions.

Given the recurring theme of technology acquisition and
learning, participants were asked to estimate the training time
required to use the robotic arm with adaptive control at home
proficiently. While all participants were confident they could
achieve proficiency with time and practice, their estimated
training times varied, ranging from a few hours to several
days or even weeks, potentially including further coaching
sessions.

2) Visualization: A central feature of the control system is
the arrow-based visualization displayed on the smart glasses
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(see top left in Figure 1). Participants often felt uncertain
about what action the robotic arm would take when following
the arrow. As a result, they reported missing “the right
one” (P8) and distrusting the system’s suggestions. In these
cases, frustration and uncertainty arose as the remaining task
completion got more complicated and resulted in unexpected
situations.

Overall, participants generally understood simple arrow
indications. However, more complex movements were chal-
lenging as many had difficulty with rotations, curved move-
ments (multidimensional paths), and distinguishing between
forward and backward control directions. Some participants
struggled to keep track of new suggestions and wanted
the option for manual control in addition to the generated
suggestions; an option that was not available during the
study. Furthermore, participants also wished the system
would indicate which object it was targeting.

3) Physical Devices: Participants using Head-Control re-
peatedly forgot which physical movement corresponded to
each UI command, leading to periodic mix-ups. Conversely,
those using the Joystick struggled with the differences be-
tween controlling a robotic arm and a wheelchair. However,
after training, the Joystick users reported finding the adaptive
control easy to use and an improvement over previously
known controls.

Responses to the Head-Control varied among participants.
While most users found the adaptive control easier with
increased insight and practice, two users experienced stress
and physical tension from the head movements. One partici-
pant attributed this to their neuro-psychological impairment,
finding the movements tiring and challenging to focus on.
Nevertheless, participants generally found the adaptive con-
trol to be an interesting new method of controlling a robotic
arm. Many described it as enjoyable once they became
accustomed to it, with some even finding the suggestions and
control to be intuitive once they got the hang of it (P23).

Participants who also tested the Assistive Buttons often
found them to be the more accessible and more comfortable
solution. Only one out of five participants from the Joystick
group who tested the Assistive Buttons preferred the Joystick.
Among those who initially tested the Head-Control, 12
tried the Assistive Buttons, with only three preferring Head-
Control. Participants who preferred the Assistive Buttons
found them more familiar and easier to use. They also found
the limited direction options (left, right, forward, backward)
to be more accessible.

4) General User Remarks: The study occurred at a fair
rather than in a controlled laboratory environment, which was
noted by participants as contributing to nervousness. Addi-
tionally, the bright light at the trade fair caused difficulties in
recognizing graphics on the transparent display of the smart
glasses. Participants found it strenuous to shift focus between
the real robotic arm and the display and expressed a desire
for visual alignment. Despite these challenges, participants
generally viewed the robotic system positively, appreciating
the balance between suggestions and manual control.

5) Preferred Level of Automation: Given the frequent
discussion surrounding the balance between automation and
manual control in assistive robotics and shared control,
participants were asked to express their own preferences
regarding the level of automation on a scale ranging from 0
(i.e., no automation) to 10 (i.e., robotic system that functions
completely autonomous).

0 1 2 3 4 5 6 7 8 9 10

3
6
9

Automation Preference over all Users

Fig. 5: Histogram of preferred level of (robotic) automation
of all users (0 complete manual control, 10 complete au-
tomation)

The results, shown in Figure 5, display a peak at the
midpoint (5) with overall relatively evenly distributed re-
sponses at lower levels of automation. Notably, none of the
participants favored the highest levels of automation. Their
reluctance towards complete automation stemmed from the
significance they placed on maintaining independence from
technical devices. However, there was a consensus among
users that some degree of automation would be beneficial
or even essential, considering their physical limitations.
Overall, users expressed a preference for support in manually
controlling the robot rather than full automation.

VI. DISCUSSION

Previous research [14], [15], [16] has demonstrated the
general functionality of adaptive control with predetermined
input devices, conducted by non-disabled users. The user
procedure data generated in the present study corroborates
these findings by confirming a general functionality inde-
pendent of the input device. The measured completion times
and number of mode or UI switches showed no significant
differences between input devices. Moreover, all participants
completed the trials successfully and most evaluated the
control concept positively. Consequently, these findings val-
idate hypotheses H1 and H3 with a considerable degree of
confidence.

In contrast, verifying H2 proves not as straightforward.
Participants needed to learn the use of new technologies
(glasses and adaptive control), which was mentally taxing
and likely affected their perception of the adaptive control
method. However, most participants did succeed after a brief
period. Notably, they all anticipated that with more practice,
usage would become easier, quicker, and more intuitive.
This involves both learning the general concept of robot
control and gaining a better understanding of the arrows
and resulting robot motions. The latter, in particular, would
lead to a clearer understanding of the robot’s motion intent
and encourage user trust in the suggestions and the overall
system.
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Overall, future users of an assistive system as used in
this study could mitigate many — if not all — challenges
experienced by the study participants. Among expected
training effects, the glasses could be more personalized
and calibrated more precisely to the individual user than is
feasible in an experimental setup. Also, users are likely to
select their preferred input device and become proficient with
it. As shown by the preferred level of automation and user
feedback, the presented concept fits requested the middle
ground between automation and manual control. The results
of the Raw-TLX indicate low physical and temporal demands
when using adaptive DoF control with an assistive robotic
arm, thus representing an added value compared to previous
solutions.

A. Limitations

This study evaluated a novel research-based shared control
concept specifically with the intended user group, in contrast
to much of the existing literature, which often includes
participants outside this demographic. Our approach allows
us to draw conclusions directly relevant to the end users
without relying on generalizations from non-disabled user
cohorts. However, to achieve this, the study took place at an
international trade fair for rehabilitation and care, resulting
in certain environment-specific limitations.

Despite efforts to isolate trials and minimize external
influences, the largely uncontrollable environment of the
trade fair had a marked impact. However, even with the often
audibly chaotic conditions, participants generally remaining
focused during recordings, with only few getting noticeably
distracted. Nevertheless, the noise and activity levels did
affect the quality and options for recording quantitative data.
As such, we focused more on the qualitative analysis of
audible user comments during trials and their responses in
the final interview. This approach yielded valuable insights,
particularly because they came directly from the intended
users themselves. Despite some distractions in the environ-
ment, they did not impact the qualitative data.

Finally, like most studies involving new control concepts,
our participants only had a brief period to test the system. For
comprehensive insights, the shared control approach requires
extensive testing by target users in their everyday lives under
assistive care settings.

VII. CONCLUSIONS

This study presents an evaluation of a novel but literature-
known concept of shared assistive robot control within the
context of ADLs through direct engagement of the intended
user demographic in a realistic setting. Our findings demon-
strate the successful implementation of the control mecha-
nism across multiple input devices, thereby highlighting its
versatility and broad applicability. As such, the proposed
control mechanism extends beyond a standalone solution and
offers a significant enhancement over current best practices.

Given that all study participants were representative of
the target group, their quantitative feedback was particularly
relevant and valuable. While some users initially encountered

challenges with the system or found their assigned input
device to be unfamiliar, all participants expressed confidence
in being able to master the control with more time and prac-
tice. Notably, participants reported experiencing satisfaction
in engaging with the presented control.

Overall, while our study does not conclusively show that
adaptive control is straightforward to learn or intuitive, it
does propose that the control method is indeed readily learn-
able within a short time frame, adaptable across different
devices, and highly promising from an end-user perspective.
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Abstract—Assistive robots have the potential to support 

people with disabilities in their Activities of Daily Life. The 

drinking task has a high priority and requires constant 

assistance by caregivers to be executed regularly. Due to 

incapacitating disabilities such as tetraplegia, which is the 

paralysis of all limbs, affected people cannot use classic control 

interfaces such as joysticks. This paper presents a robotic 

solution to enable independent, straw-less drinking using a 

smart cup and no physically attached elements on the user. The 

system's hardware and software components are presented and 

the overarching control scheme described. The cup approaches 

the mouth utilising a user-friendly and vision-based robot 

control based on head pose estimation. Once contact has been 

established, the user can drink by tilting the cup with a force 

sensor-based control setup. Two experimental studies have been 

conducted, where the participants (mostly able-bodied and one 

tetraplegic), could separately experience the cup’s contactless 
approach and the contact-based sequence. First results show a 

high user acceptance rate and consistent positive feedback. The 

evaluation of internal data showed a high reliability of the 

safety-critical components with the test groups perceiving the 

system as intuitive and easy to use. 

Keywords—assistive robots, human-robot interaction, force 

control, head pose estimation 

I. INTRODUCTION 

People suffering from a severe disability, like tetraplegia, 
have difficulties performing Activities of Daily Living 
(ADLs). Tetraplegia is the paralysis of four limbs, thus 
limiting voluntary motor function of everything below the 
neck and, even though the treatment of paralysis has 
undergone great progress, people require the assistance of a 
caregiver to perform ADLs [1]. 

Assistive robotic manipulators have the potential to 
support individuals with tetraplegia to regain some of their 
independency in performing ADLs. One example is the 
wheelchair-mounted robotic manipulator FRIEND, which 
was used as a personal assistant for a tetraplegic end-user in 
performing ADLs and tasks in a working environment [2, 3]. 
A survey with potential end-users of robotic manipulators 
shows that drinking and eating are highly prioritized tasks [4]. 

This paper presents a robotic solution as an attempt to 
enable a person with tetraplegia to independently perform a 
drinking task using a cup, without external human aide and 
without any physically user-attached elements. The drinking 
task is executed without a straw or similar device and must 
therefore be accomplished with contact between the user and 
the robot-handled cup. The goal to be achieved, is to give the 
user a feeling of sovereignty over their own drinking and the 
perception of performing the drinking themselves, as opposed 
to being served a drink. First results and user feedback based 
on two small studies are presented. 

The main contribution of the presented work is a 
consistent, user-friendly, and fully flexible concept of control 
with the human in the loop as opposed to a system using 
predefined positions. This allows a safe and intuitive human-
robot interaction. The drinking is fully personalised with the 
user gaining control and comfort using natural head 
movements for the delivery of the cup to the mouth, and 
achieving adaptive control of the drinking process using cup-
mounted force sensors. 

The paper is organized as follows: In section II, related 
work is reviewed. Section III describes the proposed 
framework and Section IV presents the experimental results 
and the evaluation. Finally, Section V discusses the 
conclusion with directions for future work. 

II. RELATED WORK 

An important topic in assistive robotics is Human-
Machine Interfaces (HMIs), as users are often restricted in 
their movements and standard computer interfaces might not 
be usable. Based on a study using a vision-guided robot arm, 
[5] shows that many systems are too complicated for their 
respective end-users who have to follow tedious HMI-
sequences. It also shows that systems should adopt higher 
velocities when not close to the user to minimise waiting times 
and user frustration. 

Various systems have been developed within the field of 
assistive robotics, most of them based on a Wheelchair 
Mounted Robot Arm (WMRA). For example, the FRIEND 
systems I-IV [2] where FRIEND IV was capable of enabling 
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a tetraplegic person to work as a librarian. The used HMI 
consists of a set of buttons operated by the user with head 
motions, a chin joystick, and a monitor for system feedback. 
This setup can be seen as a head operated computer mouse 
which allows the user to move and click with a cursor on the 
monitor to control the wheelchair and WMRA.  Previous 
versions also addressed the drinking task, but were for safety 
reasons restricted to drinking with a straw [3]. 

Another approach to assistive drinking shown by [6] uses 
a Brain-Machine Interface (BMI) to control a robotic 
manipulator holding a cup for drinking without a straw. An 
externally mounted RGB-D camera is used to estimate the 
user9s mouth by applying a golden-ratio approach on the 
detected face, thus bypassing issues of face occlusion by the 
cup and the robot. The user controls the scenario by giving 
GO-signals via the BMI and can thereby accelerate or stop the 
procedure in seven discrete predefined steps. 

Moreover, hands-free human-robot interfaces could be 
used to assist individuals suffering from tetraplegia. Two 
interfaces using eye gestures [7] and Brain-Computer 
Interface (BCI) [8] have been developed to allow users with 
tetraplegia to control a 7 Degrees-of-Freedom (DoF) robotic 
arm and its gripper. A manipulation task was selected to 
evaluate both interfaces for the robot control. For research 
purposes the robotic degree of automation was set to zero, thus 
the user had to control the entire process step by step. It was 
shown that this kind of robot control burdens the user with 
high cognitive load due to the fast response needed during the 
drinking process. 

III. PROPOSED METHOD 

This section proposes a solution to the drinking task with 
contact between the user and the cup, maintaining user safety 
as an active element inside the loop and without using 
predefined steps. The drinking procedure is divided in two 
consecutive sequences which are individually described 
below: 

- The 8Vision-based Robot Control to Serve a Drink9 
handles the delivery of a grasped cup to the user9s 
mouth based on camera input, whereas 

- the 8Robot Force Control for the Drinking Process9 
deals with the process of tilting the cup based on the 
force applied onto the cup by the user, thus enabling 
drinking. 

A. Hardware Setup 

The Kinova Jaco 2 [9] 7-DoF spherical ultra-lightweight 
robotic arm with a three-finger gripper attached as the end-
effector (Fig. 1a) is used as the main assistive robotic 
manipulator. The Jaco 2 has been specifically designed for use 
as an assistive robot and has been thoroughly tested in a 
scientific context [10]. 

The robot arm grasps a smart cup (Fig. 1b), developed in 
previous work [11], consisting of a feeding cup with a beak, 
two force sensors, and a Bluetooth module which wirelessly 
transmits the force values to the operating computer. The 
force sensors are attached to the beak of the cup, just above 
and below the mouth piece. In the context of this work, the 
beak of the mouth piece is considered as the cup9s origin. 

An Intel Realsense Depth Camera D435 [12] is selected as 
the vision sensor and is mounted on the robot9s end-effector 
between the gripper and the last joint using a smooth 3D-
printed attachment clamp. The vision sensor is USB powered 
and provides RGB-D (Red Green Blue - Depth) information 
of the scene ahead, with an RGB resolution of up to 
1920x1080 pixels and a depth sensor range between 0.105 m 
and 10 m. The short distance between the camera and the 
robot9s end-effector minimises the occlusion of the scene by 
the manipulator, as only the smart cup and the gripper9s 
fingertips can be seen obstructing the scene. For this 
application, the camera is configured to allow minimal depth 
measurements, thus being able to detect the distances of 
objects right up to the tip of the cup. 

A UNIX computer is used to combine all systems, 
interpret the sensor data and control the robot manipulator 
accordingly. The proposed system is developed on Robot 
Operatic System (ROS) [13]. 

B. Vision-based Robot Control to Serve a Drink 

The concept of vision-based robot control, which is used 
to serve a drink, is shown in Fig. 2. The main idea is that the 
robot delivers the smart cup to the user9s mouth using data 
gathered by the vision sensor. The information from the vision 
sensor is processed by the following modules: Vision-based 
User Face Detection and Tracking, Head Pose Estimation, and 
Mouth Pose Estimation. The task control module calculates 
the necessary robot action based on the mouth pose estimation 
and the robot pose, and controls the robot accordingly. 
Furthermore, the task control module uses the force data from 
the smart cup to ensure safe human-robot interaction. The 
modules in Fig. 2 are explained in detail as follows. 

 

Fig. 2. Vision-based Robot Control to Serve a Drink   

1. Face Detection and Tracking 

The frontal-face detector of the dlib open source library 
[14] is used to search the 2D RGB-data of the vision sensor 
(camera) for a human face in order to detect the user. This 

  

a b 

Fig. 1. The hardware components a) assistive robotic manipulator with 

vision sensor, b) smart cup with force sensors [11] 
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detector is based on linear Support Vector Machine (SVM) 
using features of Histograms of Oriented Gradients (HOG) 
and has been trained on images of frontal faces from the 
Labeled Faces in the Wild database [15]. The output of this 
module is the 2D bounding box of the user9s face. 

In case the face is not detected, but information about a 
recent valid face detection from a previous iteration is 
available, a Discriminative Correlation Filter with Channel 
and Spatial Reliability (CSR-DCF) tracker [16] is used to 
estimate the bounding box of the face. This tracker compares 
the frequency domain of the relevant area and compares it to 
its surroundings to determine an object9s movement in a 
sequence of frames. 

2. Head Pose Estimation 

Based on the detected user's face, a predefined 3D model 
of a human face is aligned with the data by applying an active 
shape model [17] based approach. The model is fitted by 
applying a cascade of regression trees, which have been 
previously trained on the 300-W dataset with 68 landmarks 
per face [18]. 

Using the landmark knowledge of the predefined 3D 
model, a PnP solution is calculated based on the RANSAC 
paradigm [19]. The result is a 3D position and orientation for 
the camera reference system ( �þ� ) in relation to the landmark 
coordinate system with the mouth at its origin. The head pose 
in relation to the world reference frame ���  can be calculated 
by applying (1), with ���  as the transformation of the robot9s 
end-effector reference to the world reference system as result 
of the direct kinematics, and �þ�  as the transformation of the 
camera reference system to the robot9s end-effector system as 
defined by the rigid connection of the attachment clamp.   ��� =  ��� ∙ �þ� ∙ ( �þ� )−1  (1) 

The final head pose is validated twice to ensure user 
safety. This is done by partially reversing the previous 
procedure, thus reprojecting the face landmarks of the final 
pose onto the image plane of the camera. This projection 
outputs new 2D landmarks which are compared to the 
equivalent landmark projection of the fitted active model. If 
the error is too large, a misdetection is assumed and the pose 
is omitted. The second validation is performed in case 
information about the user9s pose is available from previous 
iterations, by comparing this prior information to the most 
recently calculated user pose. If either the orientation or the 
position shows major changes, the chances of an error are 
raised and the head pose is again omitted for a higher user 
safety. 

Even though not intended by the user, it is possible that 
they move their head too much during two iterations, thus 
causing the second validation step to fail. This behaviour is 
intended for an increased user safety, as the situation is 
considered dangerous if too much user movement occurs and 
the possibility of false detections rises. 

3. Mouth Pose Estimation 

After the head pose has been estimated successfully, the 
pose ���  of the mouth with respect to the world reference 
frame can be directly derived from the result as shown in (2), 
because both poses share the same reference system and the 
user9s mouth as their origin. 

  ��� =  ���   (2) 

When the robot is advanced close to the user (distance 
between the beak and the mouth is approx. 5cm), the head 
pose cannot be estimated anymore. Therefore, another method 
to estimate the mouth pose is developed in this work. The 
proposed mouth pose estimation calculates a result based on 
information gathered in previous iterations and predefined 
knowledge of the underlying path control logic, by comparing 
the previously tracked position of the mouth with an updated 
prediction. Two assumptions are considered: 

1. If they want to drink, the user does not move, and 

2. the robot moves the smart cup in a direct path towards 
the mouth. 

The first assumption is only a minor constraint on the 
user9s behalf as they would also refrain from moving if 
another person served them instead of a robot; and the second 
assumption is system-defined. If the user were allowed to 
move and this assumption were not made, the user9s mouth 
position would be undefined until the transformation is 
available again. This would result in a safety-critical situation. 

Using those two assumptions, an estimation of the 
mouth9s position with respect to the camera can be calculated. 
Initially, the position obtained by previous head pose 
estimations is used and adjusted afterwards, while the position 
change of the camera is known by applying the robot9s direct 
kinematics. The vector between this new camera pose and the 
previous head pose is then scaled, such that its length 
corresponds to a selection of distance values measured by the 
vision sensor. 

The calculated position of the mouth is reprojected into the 
image plane. From the projected landmark points, a bounding 
box of the mouth-and-nose-region is calculated. In the 
meantime, a CSR-DCF tracker [16] trained during previous 
head pose estimations tracks the same region based entirely 
on RGB information and also introduces a bounding box. The 
resulting rectangles of both bounding boxes are compared 
with respect to their relative overlapping area. If the area 
exceeds a predefined threshold, it is assumed that the correct 
position of the mouth is known, and thus the position of the 
mouth is accepted. 

The result of the head and mouth pose estimation is shown 
in Fig. 3 with the 3D-landmarks as red dots and the resulting 
pose as a color-coded coordinate system (red = x-axis, 
green = y-axis, blue = z-axis) at the user9s mouth. A white 
rectangle represents the area used to calculate the safety-
critical user distance. 

 

Fig. 3. Result of the Head and Mouth Pose Estimation with 3D-landmarks 

(red dots) and coordinate system (red = x-axis, green = y-axis, blue = z-axis) 
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In the event that the threshold is not met, it is implied that 
either the user has moved or another error has occurred. In 
either case, reliable information cannot be assumed and the 
calculated mouth pose is discarded. This also cancels future 
mouth pose estimations until a new head pose has been 
identified and the tracker is redefined. 

4. Task Control 

As defined by the control concept, the robot control is 
based on head pose information. The task control module is 
designed based on an analogy of a human assistant who serves 
a cup to the user and reacts to the user9s head orientation. This 
results in the cup being brought to the user9s mouth only if the 
head is oriented towards the cup. If this orientation is not 
given, the robot motion is stopped and, after a small delay, 
reversed towards a predefined home position of the robot. 

When the head of the user is oriented towards the cup and 
the cup is within a predefined field of view with angle θ (in 
this work θ = 15°) in either direction of the user9s central z-
axis, the robot moves the cup on a smooth and parabolic 
trajectory towards the mouth. The goal of this process can be 
described by (3) with �ý�  as the pose of the cup9s beak in 
relation to the world reference frame.   ��� =  �ý�   (3) 

The pose of the beak �ý�  can be calculated using the direct 
kinematics of the manipulator and structural information 
about the grasped cup as shown in (4).   �ý� =  ��� ⋅ �ý�  (4) 

Fig. 4 shows an example path (purple) for the end-effector 
during the cup9s approach towards a user with the respective 
coordinate systems of the user and the end-effector (red = x-
axis, green = y-axis, blue = z-axis), and the θ-based field of 
view. Following a parabolic path, the cup initially converges 
towards the z-axis of the mouth before closing the distance. 
Once the cup has reached a distance of less than 5 cm to the 
mouth, the path is no longer defined by parabolic curves but 
moves the cup on a straight path directly to the user9s mouth. 
The task control module sends velocity commands to the 
robot, in order to control it along the path. 

 

Fig. 4. Example path of the cup9s approach 

Moreover, in case the force sensors detect a contact at any 
point before the mouth is reached, the approach is stopped. If 
the contact has been initiated intentionally, the second 
sequence of the drinking process commences. (section III.C). 

If, at any point, no head pose information is available, or 
if the user9s orientation does not meet the requirements, the 
advance of the cup towards the user is stopped. If not updated 
within a short time period, the cup is retracted towards the 
home position, while the camera remains oriented towards the 
last known head position, thus enabling the user to regain 
control at any given point. The home pose is defined in a way 
that the user9s head is seen by the camera in a standard 
scenario. 

C. Robot Force Control for the Drinking Process 

Once the smart cup, controlled by the vision-based robot 
control (Section III.B), gets close to the user9s mouth, the 
force controller is initialised to enable the drinking process. 
The objective of this controller is to support the active 
drinking task wherein the user interacts with the smart cup by 
applying force to the force sensors (shown in Fig. 1b). Fig. 5 
presents an overview of the force control for the drinking 
process. The inputs of this controller are the values read by the 
two force sensors on the cup and the current pose of the robot. 
The output is the Cartesian velocity command supplied to the 
robot. The controller drives the cup along a vertical plane 
which runs along the nose of the user, perpendicular to the 
face, to emulate a natural drinking motion. 

 

Fig. 5. Overview of force control for the drinking process 

When the user applies force on the back sensor (Force_B), 
the cup9s beak rotates down by a discrete angle (i.e.: feed 
motion). When the user applies force on the front sensor 
(Force_F), the cup9s beak rotates up by a discrete angle (i.e.: 
non-feed motion). When forces are applied on both sensors 
simultaneously, the cup initiates a fall-back motion, moving 
laterally away from the user and stopping at the home 
position. The drinking task is completed. 

To achieve this behaviour, three threshold values are 
defined for each of the force sensors: 

• Trigger threshold - 0.5 N - Minimum amount of 
force to be applied to either sensors to trigger the 
respective action. Allows for slight pressure exerted 
when user swallows water. 
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• Fall-back threshold – 1.0 N – Simultaneous force 
required on both sensors to initiate fall-back. 

• Safety threshold - 2.5 N - Maximum amount of force 
allowed to be exerted before an emergency halt is 
issued to the robot, stopping all motion. 

This control schema is initially build based on intuition and 
available hardware. The next section explains how it was 
tested and proven to be effective. 

IV. EXPERIMENTAL RESULTS AND EVALUATION 

Two small studies were conducted: the first to evaluate the 
safety and usability of vision-based robot control and the 
second to evaluate the general usability of the force-controlled 
feeding system. 

At the end, each user was presented with a general 
feedback questionnaire based on a 5-point Likert scale. The 
questions are agreement based and the Likert scale ranges 
from 1 (<strongly disagree=) to 5 (<strongly agree=). All 
participants gave their informed signed consent to participate 
in this study.   

A. Serving a Drink 

The first study is designed to evaluate the safety and 
usability of the cup serving scenario with the proposed 
solution. 25 users, one of whom is tetraplegic, participated in 
the experiments. The average age was 31.08 ± 14.55 years 
with a gender distribution of 13 males and 12 females (11 
able-bodied and one tetraplegic). The experiments were 
conducted individually and independently for each subject. 

Seven tasks were performed by each user. In each task, the 
smart cup is already grasped by the robot. The user is seated 
on a chair (or a wheelchair for the tetraplegic user) at a pre-
defined pose relative to the robot. The concept of control 
described in section III.B.1 is applied in each task. The tasks 
were as follows: 

0. The user freely tested the system for one minute to get 
familiar with it. 

1. The user constantly oriented their head towards the 
robot9s gripper, thus effectively commanding the robot to 
bring the cup to their mouth on a direct path. 

2. The user performed so-called abort actions: The robot 
advanced the cup towards the user, but the user aborted the 
task by turning their head away. When the robot detected such 
an abort action, it stopped and withdrew towards its home 
position. The user was encouraged to compare the abort 
actions as reactions to motions to the top, bottom, left, and 
right. 

3-6. The last four scenarios were performed with different 
starting positions for the robot and with the user imagining a 
standard drinking application, but also allowing themselves to 
become distracted once in a while to include an abort action. 

Fig. 6 shows the robot9s end-effector paths of five 
different users during scenario 1 with the home position in the 
top right and the users9 mouths on the left. Though every user 
sat on the same chair with a defined position relative to the 
robot, the pose of the mouth, and with it, the final position of 
the end-effector, differs vastly. This is due to a variety of 
reasons including different heights and head orientations and 

it shows the necessity of an adaptive system as proposed in 
this paper. 

 

Fig. 6. 3D paths of the robot9s end-effector for 5 selected users in task 1 

As the safety-critical elements during the cup serving 
sequence are mostly defined by the abort actions as well as the 
distance information obtained from the vision sensor and head 
pose estimation, these components are discussed in detail. 

The outcome of abort actions during scenario 2 was 
manually sorted into the three categories: successful, delayed, 
and failed. Actions were considered delayed if the system did 
not react immediately and failed if an emergency stop was 
pressed or the user was forced to change the current abort 
motion in order to cause a reaction of the system. The users 
performed between 3 and 24 abort actions each, with 214 
actions in total. Approximately 7 % of all actions were 
resolved with a delay and 4% of all actions failed, most of 
which occurred during upwards abort motions. The failing of 
upwards abort motions is caused by the fact that the cup 
already approached the user from above, which already 
requires an upwards tilting of the head. For the abort motion 
the users had to rotate their head very far upwards to use this 
specific abort action. 

For redundancy purposes, the distance between the cup 
and the user is obtained using two separate methods. While 
one method uses the result of the previously mentioned head 
pose estimation, the other one is based on averaged values of 
the depth image in the region of the face. The robot control 
logic uses both methods and compares their values to lie 
within a defined offset for a single redundancy check. To 
evaluate the two methods during the experiments, the values 
of sequence 1 are compared to a reference value, which is 
calculated as the remaining distance of the robot9s end-
effector to its final position. The results show an average error 
of 0.194 ± 0.038 m for the first method, and an average error 
of 0.142 ± 0.011 m for the second method respectively. The 
values show comparably high and constant systematic errors, 
which are mostly due to the offset of the final robot9s end-
effector position to the mouth. This offset is a known factor 
and taken into account by the control setup. The remaining 
random errors are very small and considered as such in terms 
of safety critical actions. 
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The participants were able to test the system thoroughly in 
a realistic scenario during the final four sequences and 
reported their feedback on a questionnaire afterwards. The 
results of the Likert scale are shown in Fig. 7 as the mean 
values across subjects. The feedback is positive throughout 
with a rapid user familiarisation and high acceptability. The 
previously mentioned issues with the abort actions to the top 
are only slightly reflected by users9 feedback. This is probably 
due to different home positions for the different tasks, thus not 
always approaching the user from above, but also from lower 
directions. The user feedback also shows a requirement to 
increase the velocity of the system. 

 

Fig. 7. Subjective user feedback for the first study 

The feedback of the tetraplegic user aligns with the 
feedback of the other participants and is very positive in total, 
even verbally referring to the system as her <favourite one=. 
As a very experienced user of assistive robotic systems, she 
did not express any concerns regarding safety or comfort, but 
instead listed the system as being rather too slow. Due to the 
user9s restricted motion capabilities, abort motions to one side 
were not possible, but all others worked without any 
problems. 

B. Drinking Process 

The experiments for the drinking process were conducted 
with 16 participants (15 able-bodied and one tetraplegic). The 
average age was 26 ± 10 years. Out of 16 participants, seven 
(six able-bodied and one tetraplegic) were females. The users 
were allowed a brief acclimatization period followed by an 
attempt at one full successful run for the drinking process, 
terminating in a fall-back. 

Fig. 8 shows the orientation of the end-effector in Euler 
angles (Fig. 8a) and the concurrent force sensor readings (Fig. 
8b) during one of the trials of the drinking process. These 
values were collected as output values of the manipulator for 
the experiments of each user. Force_B (red curve) crossing the 
trigger line (yellow line) causes an increment in the roll angle 
(feed motion) and Force_F (blue curve) crossing the trigger 
line causes decrement in the roll angle (non-feed motion). 
Both sensors crossing the trigger line causes the smooth 
decrement in the roll angle, which is the fall-back. The initial 
increment in the roll angle seen before any force input is a pre-
defined rotation for user convenience. 

 

Fig. 8. Plots of feeding experiment of one of the trials 

Since this is the second trial for the same user, the user is 
already familiar with the system, as evidenced by the fact that 
there are no overshoots above the pain threshold and that the 
user is able to manipulate the cup with only the minimum 
amount of force required. 

Some of the feedback provided by the subjects is 
summarized in Fig. 9 as the mean feedback across the 
subjects. It can be safely concluded from the analyses of Fig. 
8 and Fig. 9 that the force controller designed for the drinking 
process performs satisfactorily well. With regards to the 
drinking process, in alignment with the rest of the subjects, the 
tetraplegic user felt that the system was indeed comfortable 
and intuitive to use. She did have some critical feedback to 
provide, which forms the basis for some opportunities of 
further development: 

• She preferred to use a normal cup without a beak 

• She felt the need for a user-controlled emergency 

stop signal, such as a voice or eyes activated trigger. 

 

Fig. 9. User feedback 

V. CONCLUSION AND FUTURE WORK 

The proposed solution functions as a user-friendly and 

safe concept of control for an assistive drinking task with the 

user in the loop. The mechanical setup requires no physical 
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attachment on the user or in close proximity to them, thus 

allowing a flexible out-of-the-box usage with no preparations 

on the user9s side. 

The integration of all subsystems has been successful and 

first results could be obtained with potential users. The 

experiments show a high reliability of the safety-critical 

systems and quick responses on fall-back commands. The 

system has a high user acceptance and consistent positive 

feedback with an easy and intuitively perceived control 

scheme. 

Future work will focus on replacing the current smart cup 

with a standard cup without the beak, as requested by the 

tetraplegic user, and increasing the overall velocity of the 

system in situations that are not safety-critical. To implement 

a system capable of executing the whole drinking operation, 

the autonomous filling and grasping of the cup will be 

necessary, as well as defining a comfortable and safe home 

position for the robot. The complete system will be tested 

within a larger user study with a higher ratio of potential end-

users. 
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Abstract: Robot arms are one of many assistive technologies used by people with motor impairments.
Assistive robot arms can allow people to perform activities of daily living (ADL) involving grasping
and manipulating objects in their environment without the assistance of caregivers. Suitable input
devices (e.g., joysticks) mostly have two Degrees of Freedom (DoF), while most assistive robot arms
have six or more. This results in time-consuming and cognitively demanding mode switches to
change the mapping of DoFs to control the robot. One option to decrease the difficulty of controlling
a high-DoF assistive robot arm using a low-DoF input device is to assign different combinations of
movement-DoFs to the device’s input DoFs depending on the current situation (adaptive control). To
explore this method of control, we designed two adaptive control methods for a realistic virtual 3D
environment. We evaluated our methods against a commonly used non-adaptive control method that
requires the user to switch controls manually. This was conducted in a simulated remote study that
used Virtual Reality and involved 39 non-disabled participants. Our results show that the number
of mode switches necessary to complete a simple pick-and-place task decreases significantly when
using an adaptive control type. In contrast, the task completion time and workload stay the same. A
thematic analysis of qualitative feedback of our participants suggests that a longer period of training
could further improve the performance of adaptive control methods.

Keywords: assistive robotics; human–robot interaction (HRI); shared user control; augmented reality;
virtual reality; visual cues

1. Introduction

Robotic solutions are becoming increasingly prevalent in many areas of our pro-
fessional and personal lives and have started to evolve into collaborators [1,2]. A non-
negligible number of people live with motor impairments, ranging from slight limitations
to severe paralysis [3]. While a near-complete integration into professional and social life is
the final goal, current assistive robotic technologies focus on performing activities of daily
living (ADLs). These include tasks ranging from essentials such as eating and drinking to
more complex behaviors such as grooming and activities associated with leisure time [4].

A general problem with assistive robotic solutions is finding suitable methods and
technologies for controlling such robots. Assistive robotic devices are often characterized as
having a large number of Degrees of Freedom (high-DoF). For example, a robotic arm with
a simple gripper can freely operate in 3D space and move along Cartesian space as well as
yaw, pitch, and rotate. This typically results in five to seven DoFs. Standard input devices,
such as joysticks, only cover two DoFs. To control a high-DoF device with a low-DoF input
device, mode switching is used. This means that at any point in time, the user has to select
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a mode, which then maps the two DoFs of the input device to two of the total available
DoFs of the robot while neglecting the others. While high-DoF input devices do exist, they
are not often accessible for people with motor impairments.

Using a human–computer interface with a standard button-based mode switching
setup, Herlant et al. discovered that more than one-sixth of the total execution time is spent
changing the currently selected mode [5]. They showed that automatic mode switching
leads to increased user satisfaction within a deterministic simulation environment and with
a predefined goal.

Our latest research findings provide a proof-of-concept for a novel method of shared
control of an assistive robot. We evaluated the idea within a 2D simulation environment [6].
The novel control method uses a Convolutional Neural Network (CNN) to adaptively
generate DoF mappings based on camera data of the current situation. From a user
perspective, this system can help the user choose an optimal mapping of available control
DoFs for a low-DoF input device, either automatically or upon the user’s request. In this
paper, we build on this approach, focusing in particular on the user interface. Having an
adaptive mapping of control DoFs to the input device can be challenging to understand
and learn, which is why there is a need for visual feedback to convey that information to
the user. The approach in our previous work included visual cues in the form of arrows.
While the results are promising (see Section 2), the limitation of a 2D environment means
that it is difficult to predict how this approach transfers to 3D. For example, certain DoF
combinations might be more difficult to display with arrows in a 3D environment and lead
to visual clutter.

The goal of this paper is to explore the proposed novel control method, as well as
possible visual cues for the DoF mappings. In particular, we want to explore how the
novel, adaptive control method performs in a 3D environment compared to the standard
mode-switch approach with cardinal DoF mappings and whether changes in the visual
cues have an impact on the performance of the adaptive control method.

We conducted a remote online study with 39 non-disabled participants, in which we
compared three different control types with different DoF mapping behaviors and visual
cues. These were Classic and Double Arrow, which used two arrows attached to the fingers
as visual cues, and a visually reduced variant Single Arrow. Single Arrow only used one
arrow through the middle of the gripper (see Section 3 for a detailed description of each
control type).

The study was conducted inside a 3D Virtual Reality (VR) environment, utilizing Head-
Mounted Displays (HMDs) for an immersive experience (see Section 4.3 for a complete
description of the virtual environment). The participants repeatedly performed a simple
pick-and-place task, controlling a virtual robot arm using the three control types (see
Section 4.5 for a detailed description of the study design).

Due to the ongoing COVID-19 pandemic, we opted to recruit non-specific participants
that had access to the required hardware (an Oculus Quest VR-HMD) to participate in our
study. None of the recruited participants reported living with any motor impairments. We
acknowledge this limitation and discuss how our findings can be transferred to the target
group of people with motor impairments in Section 7.

As our main contribution, we present findings from our study, which compare our
two adaptive control types with the standard mode-switch control type, explicitly focusing
on task completion times, number of mode switches and workload. In addition, we
contribute an extensive discussion of qualitative results from voice recordings of our
participants, providing a deeper understanding of the benefits and challenges of each of
the three control types.

2. Related Work

To assist people with physical or cognitive impairments, prior research often suggests
possible solutions that use robots that automate specific tasks [7–10]. Assistive robots
are found in a variety of designs. There are stationary robots specifically designed for
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meal-assistance [11], socially assistive robots for elderly people and people with cognitive
impairments [12], navigational robots for blind people [13], and many more examples,
both in research and commercially. Besides stationary robots (e.g., fixed to a table) [14],
there are also moving robots attached to mobile platforms [15,16] or mounted to the user’s
wheelchair [9].

To help people with motor impairments, assistive robot arms are widely used, both
within the workspace and in performing ADLs [17]. Their flexibility allows for many
different applications, such as feeding assistance [18], fetch and pick-up tasks [15], and
cataloging of books [7].

Robotic assistance is generally well-received by people with motor impairments. Drol-
shagen et al. found that people with disabilities quickly accept working with robots, even if
the robots are in close proximity [19]. Regarding ADLs specifically, Pascher et al. conducted
an ethnographic study with 15 participants with tetraplegia, multiple sclerosis, Locked-In
Syndrome, and similar diseases [20]. They found that people with motor impairments
would prefer to perform ADLs themselves with the help of a robotic aid as opposed to
with the help of another person. People with motor impairments want to “live more
independently” and “gain increased autonomy”.

However, automating ADLs, as suggested in research, can have unintended conse-
quences. Pollak et al. conducted a study comparing manual and autonomous modes of
collaboration with a collaborative robot (cobot) [21]. They found that using the manual
mode in which the cobot would perform tasks only upon interaction with the participants
decreased stress significantly. The participants felt “more capable of coping with and
controlling the situation” than in the autonomous mode.

Similarly, Kim et al. conducted a study with subjects with spinal cord injuries using
an assistive robot arm in either a manual or an autonomous mode [22]. They found that
overall task completion times for manual and autonomous usage for trained participants
were similar, but user satisfaction was higher in manual mode. This is despite the fact
that autonomous usage decreased the effort necessary to perform tasks significantly. The
authors call for more flexible interfaces to control assistive robot arms.

When interacting with robots that carry out movements, a study by Cleaver et al.
showed that users generally prefer to have a visual representation of the robot’s future
movements. However, having this visualization does not significantly affect the perfor-
mance when executing tasks using the robot [23]. When using a visual representation of
robot motion intent, the most prominent solution is to show the robot’s movement using
arrows [24–26]. In addition, most of these approaches rely on Augmented Reality to overlay
the visual representation on the user’s real environment.

Heeding the call for more flexible interfaces, we proposed in our recent work an
adaptive control concept for assistive robot arms that promises to allow users to be in
control at all times while still providing them with more assistance during ADLs than the
standard mode switch control concept [6]. In this proposed concept, a CNN interprets the
video feed of a camera attached to the robot arm and adaptively outputs the most likely
movement DoFs.

With current control concepts, users with low-DoF input devices, such as simple
joysticks, can only move the gripper of an assistive robot arm in cardinal directions (i.e.,
movement and rotation around Cartesian X-, Y-, and Z-Axes). The user has to switch and
choose between the provided mappings of input DoFs to some of the robot’s DoFs. This
may include the pairings of different DoFs of the robot that are less than ideal for the given
situation, resulting in many time-consuming and mentally demanding mode switches.
Additionally, in any given mode, an input on an axis of a low-DoF device would move the
gripper only in the cardinal direction currently assigned to this input DoF. Combinations of
multiple output DoFs (such as orbiting an object, which is the combination of rotation and
translation) require more than one input DoF (e.g., both the X- and Y-Axes of a joystick) to
be engaged simultaneously in such systems.

[VIII]

115



Technologies 2022, 10, 30 4 of 23

To solve this problem, we proposed a representation of these assignments of input
DoFs to output DoFs in the form of a matrix similar to the one seen in Figure 1 in our
previous work. Each row in that matrix represents a cardinal output DoF, while each
column represents the input DoFs of an input device. The values in a column determine
which movement the robot’s gripper will perform if the input DoF is engaged. For example,
an identity matrix would yield a behavior identical to the cardinal mode switch approach,
as each input DoF is only mapped to one cardinal output DoF.

X − Axis
Y − Axis
Z − Axis

Roll
Pitch
Yaw

Gripper




1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1







0.5 0 0 0.5 0 0 0
0.5 0 0 0 0.5 0 0
0 0 0.5 0.5 0 0 0
0 0.5 0 0 0.5 0 0
0 0.5 0 0 0 0.5 0
0 0 0.5 0 0 0.5 0
0 0 0 0 0 0 1




Figure 1. Two different DoF mappings as matrices—(Left): classic control (one input DoF controls
one cardinal output DoF); (Right): arbitrarily combined controls (one input DoF controls more than
one cardinal output DoF at the same time).

This representation allows for combinations of multiple output DoFs for one input
DoF. For example, if the first column contains a value of 0.5 in the first two rows, engaging
the first input DoF would result in a diagonal movement along the XY plane of the robot’s
coordinate system (see the matrix on the right in Figure 1). According to the current
situation, the proposed control concept adaptively fills this matrix to create the most useful
combination of output DoFs.

We then conducted a small study with a 2D proof-of-concept simulation for our
proposed control concept. A total of 23 participants used a “standard” and an “adaptive”
control type for a simulated 2D robot that could drive forwards, sideways, rotate around
its center, and close its fingers to move blue boxes to target red boxes (see Figure 2). This
is the 2D equivalent of a simple pick-and-place task in 3D. Both control types switched
modes after five seconds without user input.

The results of our study showed that, subjectively, the “adaptive” control was sig-
nificantly faster but significantly more difficult than the “standard” control. “Adaptive”
control also led to significantly shorter sequence execution times.

While these findings are promising, the concept requires further evaluation in 3D
and in a more complex environment with devices that have more DoFs. We set out to
do precisely that: evaluate the proposed concept of adaptive control in a more complex
environment with a robot arm with seven DoFs.

Figure 2. The simulated robot with two out of the four cardinal DoFs (left) and two adaptive DoFs
(right) [6].

3. Control Types for a 3D Environment

To compare the standard control type of switching between cardinal modes to the
adaptive approach, we implemented three control types (see Figure 3) in a simulated 3D
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environment (see Section 4.3). This simulated environment is meant to act as a proxy for a
potential Augmented Reality (AR) implementation. There, users would control an assistive
robot arm and see the visual feedback superimposed on the real world and robot via an
AR-HMD device. Instead, in our 3D simulation, users wear an Oculus Quest VR-HMD,
which superimposes the visual feedback directly in the computed 3D scene. An overview
of the environment and the control types described in the following sections is provided as
a video (see Video S1).

All three control types use arrows as visual cues. Specifically, the arrows show which
direction the gripper will move if a user engages the corresponding input DoF. To allow the
users to predict the robot’s movement when engaging the input DoF with positive values
(e.g., pressing the control stick up) and negative values (e.g., pressing the control stick
down), the arrows have two heads. Each arrowhead points towards the corresponding
movement direction.

(a) (b) (c)

Figure 3. Visualization for the different control types: (a) Classic; (b) Double Arrow; (c) Single Arrow.

Using visual cues in 3D as opposed to 2D often causes visual obstruction, e.g., if the
gripper is close to the table, the active DoF would lower the gripper towards the table. In
that case, the arrows would clip through the table, making them partially invisible to the
user. It would also be common that the robot’s gripper itself obstructs parts of the arrows,
making them harder to see and interpret. To eliminate these problems, the arrows were
made translucent and are always rendered above all other objects yet shown at the correct
depth as if looking through whatever is blocking them. This behavior is similar to viewing
the scene through Augmented Reality glasses, which would overlay the arrows onto a real
scene as opposed to showing the arrows as part of the real world that can be blocked by
other real-world objects.

To more easily communicate the currently active mode, all control types show a blue
indicator above the robot gripper consisting of four spheres, each representing a mode (see
Figure 3). The sphere representing the currently active mode is darker and less translucent
than the inactive ones, indicating how many modes are left to switch through before
returning to the first.

3.1. Manually Designed DoF-Calculations

The focus of this study was to evaluate how adaptively changing DoF mappings
would impact the participant’s experience in a more complex 3D environment. While we
proposed a CNN to perform these calculations in our previous work [6], there are other
ways of calculating these DoF mappings. We developed a manually scripted method of
calculating these DoF mappings for the specific task used in the study instead of training a
CNN. This method generates a matrix with the same rules described in our previous work
(see Figure 1) to represent DoF mapping, thus providing the possibility of equal movements
as generated by a CNN trained on camera data. Since our primary focus is the participant’s
experience with the adaptively changing DoF mappings, we assumed that this approach
would significantly decrease the possibility of unpredictable behavior while having little
impact on the applicability of our findings to a system using a CNN. A detailed description
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of the generated output values is presented in the description of the adaptive control types
(see Sections 3.3 and 3.4).

This approach is akin to the widely used “Wizard of Oz” method, in which the output
of a proposed system is instead provided by a human to test the user experience of that
proposed system before finishing the implementation. In our case, we instead simulated
the output of a complex CNN using a simpler system. As with “Wizard of Oz” experiments,
our results should therefore be applied to the user experience with the system using a CNN,
but the absolute performance measures may vary.

We developed three control types—Classic, Double Arrow, and Single Arrow—to func-
tion with different assistive robot arms and different input devices. To conduct the study,
we decided to use the widely available stand-alone VR headset Oculus Quest. The Oculus
Quest consists of the headset itself, and two motion controllers, one for each hand, with
several buttons and a control stick each. Participants executed a simple pick-and-place
task (see Section 4.6) in our VR environment using a virtual model of the Kinova Jaco robot
arm using each of the control types (see Section 4.3 for a detailed description of the virtual
environment and the VR setup).

3.2. Classic Control Type

The Classic control type implements the standard mode switch control type most
commonly used to control assitive robot arms. This means that an input DoF always
corresponds to a cardinal output DoF. Given the seven cardinal DoFs of the Jaco robot arm
(X-Translation, Y-Translation, Z-Translation, Roll, Yaw, Pitch, Open/Close fingers) and two
input DoFs (the X-Axis and Y-Axis on a motion controller’s control stick) four modes are
available to the users:

1. X-Translation + Y-Translation;
2. Z-Translation + Roll;
3. Yaw + Pitch;
4. Open/Close fingers + Nothing.

The last mode has no assigned output DoF for the X-Axis on the control stick to allow
the users to learn an axis-to-action mapping.

Users can switch modes by pressing the A-Button on the right-hand motion controller.
This allows them to perform the tasks at their own pace and assess the usefulness of a
mode as long as they need to. Whenever the A-Button is pressed while the fourth mode is
active, the first mode is selected again, allowing the users to cycle through modes at will.

Two arrows attached to the fingers of the gripper show the users which motion the
gripper would perform, given a user’s input on the respective input DoF. Red arrows repre-
sent the movement assigned to the Y-Axis of the control stick, and green arrows represent
the movement assigned to the X-Axis of the control stick. As the motion controllers are also
rendered in the virtual environment, we added a visual representation onto the control
stick rendered in-game. A cross with one red axis and one green axis is shown on the
motion controller to indicate which direction corresponds to which color. A blue sphere
surrounds the A-Button to match it to the blue mode indicator (see Figure 4).
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Figure 4. The virtual motion controller with directional indicators and the robot arm with matching
arrows visualizing the currently selected mode.

3.3. Double Arrow Control Type

The Double Arrow control type implements the proposed adaptive control method
using two arrows to show the position of the fingers if a user engages an input DoF.
Therefore, each input DoF corresponds to a combination of cardinal DoFs determined
based on the current situation. To ensure comparability with the Classic control type in
regards to the number of mode switches necessary to return to the starting mode, four
modes were developed. The modes are ordered by their complexity and usefulness to the
users’ goal of reaching the next target.

As in the Classic control type, two arrows attached to the fingers of the gripper show
the users which motion the gripper would perform, given a user’s input on the respective
input DoF. Red arrows represent the movement assigned to the Y-Axis of the control stick,
and green arrows represent the movement assigned to the X-Axis of the control stick.

The first mode assigns the Y-Axis of the control stick to a movement that both rotates
and translates the gripper towards the next target simultaneously. More precisely, if the
gripper is further than 10 cm away from the target, the movement is oriented towards a
point 15 cm above the target. If the gripper is closer than 10 cm to the target, the movement
is oriented towards the actual target. This ensures that the gripper tends to grasp and
let go of objects from above, as opposed to trying to do so from the sides and thereby
possibly crashing into the table. If the gripper is within reach of an object or target point
where an object is supposed to be placed by the users, it also allows them to open and
close the fingers. The X-Axis of the control stick in the first mode is assigned the same
movement as the Y-Axis but rotated by 90◦ to allow for corrections perpendicular to the
Y-Axis movement.

To provide users with more options, the second mode assigns the Y-Axis of the control
stick to a linear translational movement towards the object and the X-Axis of the control
stick to a rotational movement of the gripper towards the next target. Both of these
assignments were chosen since only moving or only rotating are less likely to further
the goal of the users. However, the individual movements themselves are still integral
movements for coordinating the gripper orientation and some movement towards the
goal. In the optimal case, this means that users would not need to use this mode, as both
orientation and positioning would be taken care of simultaneously by the first mode.

[VIII]

119



Technologies 2022, 10, 30 8 of 23

The third mode assigns the Y-Axis of the control stick to the opening or closing the
fingers, depending on whether an object was currently held or not. The X-Axis of the
control stick has no assignment in this mode to ensure comparability with the Classic
control type.

If users stop moving the gripper, they should always be able to move the same way
they did before. To ensure this, the fourth mode always assigns the X- and Y-Axis of
the control stick the same mappings that were last used to move the gripper. Otherwise,
users who would want to assess if they had moved the robot far enough for their personal
preference using a given mapping would have no possibility to correct their course.

The system calculates the next movement mappings whenever the users stop moving
the robot. However, the system does not instantly assign the first mode to be active, as
this would disrupt the users’ flow of control (i.e., they might have stopped to asses the
situation and then decided to continue with the DoF mapping they were using). Moreover,
this would harm comparability to the Classic control type (as no automatic mode switches
happen in that control type). This means that whenever the users stop moving, the blue
mode indicator would show the fourth mode as being active, and a press on the A-Button
would lead to the newly calculated first mode.

3.4. Control Type Single Arrow

During the development of Classic and Double Arrow we discovered that, while two
arrows are a perfectly suitable visualization for a 2D environment, these arrows can result
in a large amount of visual clutter during complex movement in 3D environments. We
decided to develop a visualization that reduces visual clutter in a 3D environment and
compare its usage to the Double Arrow control type.

Dubbed Single Arrow, the input-to-output DoF mappings are calculated in the exact
same way as the mappings in Double Arrow. Switching between modes is also handled in
the same way as in Double Arrow. However, the visualization changes from displaying two
arrows at the tips of the fingers to displaying one arrow in the middle of the gripper, with a
slight offset to allow certain movements to be displayed. This reduces visual clutter for all
situations except when the fingers move.

4. Materials and Methods

We present a remote study with 39 participants to compare the proposed concept of
adaptive control (in two variations) against the standard mode-switch control concept. In
particular, we measured task completion times, the number of mode switches necessary to
perform a task, the workload necessary to use the different control concepts via a NASA
Raw-TLX (NASA Raw Task Load Index), and the participants’ personal ranking of the
three presented control types. Participants used their own Oculus Quest headset to perform
a simple pick-and-place task using a virtual robot inside a realistic 3D environment.

4.1. Hypotheses

We propose the following hypotheses:

• Average Task Completion Time

– H1 Double Arrow leads to lower task completion time than Classic. The adaptive
control of Double Arrow should significantly reduce the movements necessary
to perform the task by combining different cardinal DoFs into one continuous
movement, which otherwise would each have to be adjusted separately.

– H2 Single Arrow leads to lower task completion time than Double Arrow. Only using
one arrow for each DoF mapping should reduce visual clutter. This should lead
to a shorter processing time of the suggested movements, reducing the total time
to execute a task.

• Average Number of Mode Switches
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– H3 Double Arrow leads to fewer mode switches than Classic. The adaptive control
of Double Arrow should reduce the necessity to switch modes significantly. Since
different DoFs are combined depending on the current situation, a change in po-
sition and rotation brings the robot arm closer to the target and can be performed
without mode switches.

– H4 Single Arrow and Double Arrow need roughly an equal number of mode switches.
The behavior of the two adaptive control types is the same. Thus, while it might
take participants longer to understand what movements they can perform with
Double Arrow as opposed to Single Arrow, they should switch modes approxi-
mately as often in both control types.

• Workload

– H5 Double Arrow leads to lower NASA TLX scores than Classic. The adaptive
control of Double Arrow calculates sensible movements to reach the next goal
position and rotation. Thus, it should alleviate the participants from having to
think of a sequence of movements to reach their goal, reducing workload. This is
in contrast to the findings of our previous study, in which participants perceived
the Adaptive control as more complex than the Standard control [6]. We expect the
benefit of pre-calculated DoF combinations and the workload of developing a
sequence of movements in cardinal DoFs to be higher in a 3D environment than
in a 2D environment. Therefore, the workload for the adaptive control types
should be lower than for Classic in 3D.

– H6 Single Arrow leads to lower NASA TLX scores than Double Arrow. Since we
assume that reduced visual clutter leads to a shorter processing time for the
suggested movements, the NASA TLX scores of Single Arrow should be lower.

4.2. Participants

In total, 39 people participated in our study (12 female, 26 male, 1 non-binary), which
led to a data-set of 936 individual trials (8 per control type, 24 per participant). The
age of participants ranged from ≤19 to 69, with 20 to 29 being the largest group with
22 participants. Four participants had prior experience with controlling an assistive robot
arm, and no participants declared any motor impairments. All participants received EUR
10 as compensation unless they specifically denied the offer.

Due to the ongoing COVID-19 pandemic, we opted to perform a remote study using
VR. We did not specifically search for participants with motor impairments because the
potential target audience for people with VR setups at home that also have motor impair-
ments appeared too small. There would not be enough time to gather enough participants
in a realistic time frame. Instead, we searched for any participants that had access to the
necessary equipment (an Oculus Quest headset, see Section 4.3) and were able to install our
study software on their devices. With these non-specific participants, the performance mea-
sures for executing the tasks in our study with the different control types (see Section 4.6)
can be compared relative to one another, even though they may not be representative of
the intended target audience of such an assistive device. We acknowledge this limitation,
which is further discussed in Section 7.

Participants were recruited via announcements in different social media communi-
ties relating to VR (e.g., r/OculusQuest: https://www.reddit.com/r/OculusQuest/, ac-
cessed on 3 January 2022), social media communities regarding assistive technologies (e.g.,
r/AssistiveTechnologies: https://www.reddit.com/r/AssistiveTechnology/, accessed on
3 January 2022), and platforms for acquiring participants specifically for XR studies (e.g.,
XRDRN: https://www.xrdrn.org/, accessed on 3 January 2022) among other more local
announcements.

To ensure that VR sickness symptoms did not influence our results, the participants
filled out the Virtual Reality Sickness Questionnaire (VRSQ) at the end of the study [27]. The
VRSQ measures nine items on a four-point Likert scale and results in a value between 0 and
100, where 0 means no symptoms experienced and 100 means all symptoms were severe.
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Reported values were low (Mean: 11.30, Std.-Dev.: 11.38), and none of the participants
selected the “Severe” option for any of the items.

4.3. Apparatus

We designed a Virtual Reality environment based on a photogrammetry scan of a real
room. The environment included a virtual model of the Kinova Jaco (Kinova Jaco robot arm:
https://assistive.kinovarobotics.com/product/jaco-robotic-arm, accessed on 3 January
2022) robot arm attached to a table, a red target surface, a blue block, and two virtual
screens—one for descriptions and questionnaires and one that would show example photos
of the control types (see Figure 5). We decided to use a virtual model of a real robot arm
(Kinova Jaco) to stay as close to a physical system as possible. Additionally, the Kinova Jaco
robot arm is specifically designed and often used as an assistive device for people with
motor impairments [5].

Figure 5. The virtual environment: description screen (Left); screen with example photos of the
control types (not shown); Kinova Jaco with visualisation for control type Single Arrow (Right); table
with blue block and red target (Bottom).

The virtual environment was created with the Unreal Engine 4.26 and was developed
to be deployed to the Oculus Quest VR headset. Participants had to either own or have
access to such a headset and be able to install the study software on that headset using a
computer (Windows, macOS, and Linux could be used). Although we tested our software on
the original Oculus Quest hardware, we did not explicitly exclude the use of the newer and
very similar Oculus Quest 2 headset. The Oculus Quest consists of the VR headset and two
motion controllers, one for each hand. Each motion controller has several buttons and a
control stick. Participants controlled the robot using the right motion controller of the VR
headset. In particular, the control stick of the motion controller moved the robot according
to the currently active control type. This enabled the participants to control which DoFs
were being used and how fast the robot would move. The A-Button was used to switch to
the next mode cyclically, returning to the first mode when a mode switch was performed in
the last mode.

To simulate the movement of the robot arm, the inputs did not move the joints of the
robot as they would with a physical robot arm. Rather, the gripper of the virtual robot arm
is moved in 3D space according to the inputs, and the arm of the robot is programmed to
adopt a correct pose automatically. This was implemented using the physics system of the
Unreal Engine.
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4.4. Procedure

Participants were directed to a website with a brief introduction to the study, the
duration of the study (around 30 to 45 min), the technical and non-technical prerequisites
to participate in the study, and a description about what data would be collected during
the study. Participants were informed that certain metrics and usage data, such as task
completion times, will be recorded and sent to our servers during the study. They were
also informed that they would need to fill out a short questionnaire after each condition of
the study and that they would be able to record a short audio message after each condition.
Lastly, participants were informed that cookies were being used on our website. Each
participant gave informed consent by pressing a clearly labeled button to continue and
start the study. After giving their consent, participants were instructed on how to install
and open the study application and what to do when they were finished with the part
of the study inside the VR headset. During the study, neither a video of the participants
surroundings through the VR headsets external cameras and sensors nor a screen-recording
was captured.

Next, the participants put on their VR headsets and opened our study application.
They were greeted with a brief explanation of the study on a large virtual screen. Except for
the questionnaires after each control type, any text that was available to read on that screen
was also simultaneously read aloud as a prerecorded voice-over. The participants interacted
with this screen via a common interaction method that was also used in the menus of the
Oculus Quest headset: pointing a ray that originated from the motion controller towards
the screen and using the trigger to confirm input.

After the study explanation, the participants were presented with a description of the
first control type they would be using and the task they would be performing. This explana-
tion was supplemented with an image on a second smaller virtual screen. The descriptions
were written in a way that described how the gripper would move in relation to the current
situation. We did not explicitly describe the intentions behind the different modes and their
order in Double Arrow and Single Arrow (to provide ideally optimal mappings) to prevent
possible biases. Otherwise, the participants might have been inclined to trust the adaptive
mappings against their own judgment, thereby changing their behavior.

The explanation of each control type was followed by a series of trials of our pick-and-
place task (see Section 4.6) the participants had to execute to progress through the study.
For each control type, the task was performed once as a training trial and then eight more
times for the same control type. During these eight trials, the task completion time and the
number of mode switches performed was recorded.

After executing all trials for a control type, the participants were presented with the
NASA Raw-TLX questionnaire to capture the participants’ workload. Additionally, the
participants could record a short audio message to point out additional things they felt
were relevant during the execution of the trials. The recording of the audio message was
optional. After filling out the questionnaire and optionally recording an audio message,
the participants would continue with the next control type until they had executed all trials
for all three control types.

Upon finishing the VR part of the study, participants received a unique code to
be entered in a form on our website to complete the VRSQ [27] and our questionnaire.
We asked the participants to report their demographic data and rank the control types
presented in the VR section of the study. Lastly, participants left their contact information
to receive the compensation.

4.5. Study Design

We used a within-subjects design with the control type as an independent variable
with three levels: (1) Classic, (2) Double Arrow, and (3) Single Arrow. Each participant
performed eight trials of a pick-and-place task for each of the three control types (see
Section 4.6). Additionally, they performed one training trial for each control type to
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familiarize themselves with the control type. The order of control types shown to the
participants was fully balanced.

We measured three dependent variables for each control type: Average Task Completion
Time, Average Number of Mode Switches, and Workload via a NASA Raw-TLX questionnaire.

Average Task Completion Time in seconds While participants executed each trial with
the robot arm, the time to complete the task was measured for each participant. Then, the
average task completion time for each control type was calculated across all participants.
Average Number of Mode Switches While participants executed each trial with the robot
arm, each mode switch executed by pressing a button on the input device was counted and
stored as the number of mode switches. Then, the average number of mode switches for
each control type was calculated across all participants.
Workload via a NASA Raw-TLX questionnaire After completing all trials within each
control type, the participants were asked to fill out a NASA Raw-TLX questionnaire to
obtain information about the participants’ perceived workload. The questionnaire consists
of the following six criteria, which participants would rate on a scale of 0 to 100 in steps
of 5: mental demand, physical demand, temporal demand, performance, effort, and
frustration [28].

In addition, the participants could record a short description of their experiences
in the form of a voice message, although this was not mandatory. The recorded voice
messages were transcribed and analyzed by multiple researchers to identify underlying
themes and common impressions the participants had while using the virtual robot arm
(see Section 5.2). Participants also provided a personal ranking of the three control types in
a questionnaire at the end of the study.

4.6. Task

Participants were asked to repeatedly place a blue block onto a red target using the
assistive robot. Participants performed this task eight times per control type. We did not
use two blocks per trial to reduce variability in our results. We decided to use a simple pick-
and-place task instead of a specific ADL (e.g., drinking from a glass) since pick-and-place
tasks are part of many ADLs. Moreover, a specific ADL might have caused problems with
participants’ preconceived notions of that task (e.g., they would approach the glass in a
particular way, while the adaptive system would approach it differently). This would have
possibly distracted them from evaluating the control types as a whole, which we wanted
to avoid.

In each of the eight trials per control type, the position of the blue block changed to one
of eight predefined positions around the red target surface. The order in which the positions
were used in the eight trials was randomized for each participant and control type.

5. Results

We recorded both quantitative and qualitative data from the participants during the
trials. This section presents the results of each section from our data analysis.

5.1. Quantitative Results

The recorded quantitative data for each trial included task completion time (in seconds)
and the number of mode switches. For each control type, the quantitative data included the
NASA Raw-TLX results and the Rank given to the control type by the participants (lower
rank numbers are better). The used abbreviations and symbols are:

• IQR: Interquartile Range;
• SD: Standard Deviation;
• SE: Standard Error;
• p: p-value as an expression of the level of statistical significance;
• N: Sample Size;
• χ2(2): Chi-Squared with two degrees of freedom;
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• F: F-Statistic for the Repeated-Measures ANOVA;
• M: Mean;
• df: Degrees of Freedom for the calculation of χ2 for the Friedman Tests.

5.1.1. Task Completion Time

For each participant, we averaged the task completion times (see Table 1) of the trials
for each control type. In an exploratory analysis, we removed outliers that had average
task completion times ≥ 2.2 ∗ IQR of the mean task completion time in at least one control
type [29] (see Figure 6). Four outliers were excluded this way, leaving 35 participants for
analysis of task completion times. An inspection of QQ-plots found the resulting data-set
to follow a normal distribution.

Table 1. Statistics for average task completion times (in seconds, N = 35).

Classic Double Arrow Single Arrow

Mean 47.41 42.62 44.04
Median 44.66 37.75 41.23
Std.-Dev. 12.55 19.28 22.24
IQR 14.03 24.33 31.68

Figure 6. Boxplots for average task completion times.

To determine whether the control types had an effect on average task completion
times, we performed a Repeated-Measures ANOVA (RM-ANOVA). However, we found no
significant main effect (F(2, 64) = 1.31, p = 0.28).

In addition to the effect of control types, we examined whether the starting condition of
a participant had an impact on task completion times. We included the starting condition as
a between-subjects factor for the RM-ANOVA and discovered a significant interaction effect
between the starting condition and the task completion times (F(4, 64) = 8.86, p < 0.001).
Analyzing simple main effects, we discovered that the task completion times for Classic
stayed roughly the same regardless of the starting condition. However, both adaptive
control types heavily suffered when they were the starting condition (see Figure 7). A post
hoc pairwise comparison (Estimated Marginal Means, Bonferroni adjusted) showed that
task completion times for Single Arrow (M = 54.66 s, SE = 5.9) were significantly longer than
those for Double Arrow (M = 33.74 s, SE = 4.6) if Single Arrow was the starting condition
(p = 0.001). Conversely, task completion times for Double Arrow (M = 57.89 s, SE = 5) were
significantly longer than those for Single Arrow (M = 37.82 s, SE = 6.41) if Double Arrow was
the starting condition instead (p = 0.002). Another significant difference was found if Single
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Arrow was the starting condition: Classic task completion times (M = 48.23 s, SE = 3.57)
were longer than those of Double Arrow (M = 33.74 s, SE = 4.6) in that case (p = 0.013). The
other comparisons yielded insignificant results.

Figure 7. Estimated Marginal Means for average task completion times.

5.1.2. Mode Switches

To determine whether there were differences between the average number of mode
switches between control types we used an RM-ANOVA. Due to a software error, mode
switch data were only recorded correctly for 20 participants. We found a significant effect of
control types on the average number of mode switches (F(2, 38) = 8.08, p = 0.001). Pairwise
comparisons revealed that there were significant differences (p < 0.05) between the average
number of mode switches for both adaptive control methods (Double Arrow: M = 12.93,
SD = 3.91; Single Arrow: M = 14.23, SD = 5.15) and the Classic control method (M = 17.87,
SD = 4.8). We found no significant difference between the average number of mode switches
for Single Arrow compared to Double Arrow (p = 0.11, see Table 2 and Figure 8).

Figure 8. Boxplots for average number of mode switches.
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Table 2. Statistics for average number of mode switches (N = 20).

Classic Double Arrow Single Arrow

Mean 17.87 12.93 14.23
Median 16.50 11.63 12.31
Std.-Dev. 4.80 3.91 5.15
IQR 7.00 5.09 7.91

5.1.3. Workload and Rank

Each participant completed a NASA Raw-TLX questionnaire after completing the task
with each control type, rating each dimension on a scale from 1 to 100. To evaluate whether
there were any differences between the control types regarding workload, Friedman Tests
were performed for both the overall NASA TLX value as well as the individual dimensions
of the questionnaire. No significant differences were found for either the overall NASA
TLX value (χ2(2) = 5.33, p = 0.07) or the individual dimensions (see Table 3).

We also evaluated whether the users preferred one control type over the others. To do
so, the participants ranked the control types after completing all tasks. A lower number
means the participant ranked that control type higher. No significant differences were
found for the ranks (χ2(2) = 0.97, p = 0.65) (see Table 4).

Table 3. Statistics for individual NASA TLX Dimensions on a scale from 1 to 100 (df = 2, N = 39 for
all Friedman Tests).

Mental Physical Temporal Performance Effort FrustrationDemand Demand Demand

Classic (Mean) 53.33 30.26 36.92 32.05 48.59 41.41
Classic (Std.-Dev.) 24.64 21.67 21.07 20.48 24.84 24.52

Double Arrow (Mean) 56.28 28.21 40.38 38.97 52.82 43.08
Double Arrow (Std.-Dev.) 22.93 16.20 25.06 25.50 24.08 26.40

Single Arrow (Mean) 48.97 27.56 36.03 40.64 51.41 38.33
Single Arrow (Std.-Dev.) 24.69 22.94 20.56 26.61 23.25 26.34

Mean Ranks

Classic 2.04 1.92 1.96 1.73 1.79 1.92
Double Arrow 2.21 2.17 2.18 2.15 2.18 2.17
Single Arrow 1.76 1.91 1.86 2.12 2.03 1.91

Friedman Tests

χ2 4.23 2.07 2.38 4.86 3.15 1.76
Exact Significance 0.12 0.37 0.31 0.09 0.21 0.43

5.2. Qualitative Results

Participants were asked to describe their experience with the control type they used
in a voice message. They were asked to elaborate on the ease of controlling the robot,
their understanding of movement directions, and the predictability of the next movement
directions.

In total, 23 of the 39 participants recorded a message for all three control types. In
addition, only four participants recorded voice messages for two of the three control types,
and one participant just recorded a single voice message. This resulted in 26 voice messages
for each control type.
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Table 4. Statistics for NASA TLX on a scale from 1 to 100 and ranking on a scale from 1 to 3 (df = 2,
N = 39 for all Friedman Tests).

NASA TLX Rank

Classic (Mean) 40.43 1.87
Classic (Std.-Dev.) 17.11 0.77

Double Arrow (Mean) 43.29 2.05
Double Arrow (Std.-Dev.) 15.32 0.86

Single Arrow (Mean) 40.49 2.08
Single Arrow (Std.-Dev.) 17.29 0.84

Mean Ranks

Classic 1.85 1.87
Double Arrow 2.29 2.05
Single Arrow 1.86 2.08

Friedman Tests

χ2 5.33 0.97
Exact Significance 0.07 0.65

5.2.1. Thematic Analysis

The voice recordings were analyzed with the Thematic Analysis method described by
Braun and Clarke [30]. This method was chosen because it has the flexibility to identify
themes within the unstructured feedback from the recorded voice messages. Throughout
the analysis, we identified themes related to our hypotheses, which gave us a better insight
into how participants perceived their experience and success in executing the given tasks.

First, we transcribed the voice messages to be able to analyze them. Although most
participants recorded their messages in English, a few recorded them in German. Some of
the statements in the following chapters were therefore translated into English. Second, two
of our researchers performed the Thematic Analysis using the six-phase method described
by Braun and Clarke [30]. Each researcher read each transcribed voice message to become
familiar with the participant’s feedback. They then marked certain paragraphs and phrases
to identify underlying topics related to our hypotheses that were relevant within multiple
data-sets. Each marked phrase was assigned a short code describing its topic. We used
the software Obsidian (Obsidian markdown note-taking software: https://obsidian.md,
accessed on 3 January 2022) for managing and tagging the transcribed messages in a simple
markdown text format with links and tags. Third, codes were organized and grouped into
themes, and descriptive titles were assigned to each theme. For a visual representation,
we developed visual thematic graphs; one of which is shown in Figure 9. Although some
comments were related to several themes, we decided to sort them into the theme with
the best fit. Fourth, themes were revised and evaluated by reading the related phrases
and codes again to ensure that each theme was internally homogeneous. Fifth, both
researchers worked together to refine the themes and compile them into a single thematic
map presented in Figure 10. Sixth, a summary of the results was written based on the final
thematic map.
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Figure 9. Early thematic map with codes shown in yellow and themes shown in blue.

Figure 10. Final thematic map with themes shown in green and sub-themes shown in gray.

5.2.2. Results of the Thematic Analysis

We identified the following themes in the combined thematic map: visualization of
robot movement, cognitive demand, predictability of mode switching, predictability of movement
and learning. The excerpts from one participant’s audio messages were marked with the
participant’s unique number (e.g., P26 for the 26th participant out of the total 39 partici-
pants). Since participants often referenced the previous control types they used, we also
added which control type they were referring to in brackets when citing them.

Visualization of robot movement: This theme comprises the difficulties and benefits
of the visualization of the robot’s movement. As expected when transferring over a
visualization from a 2D environment to 3D, perspective was one source of errors across all
three control types. P5 stated, “Depending on the orientation of the robot arm, I could not
see exactly which way the arrows were going.” P4 added, “Sometimes moving the robot
was a bit difficult because it just did not feel natural from different perspectives.”

Regarding the control types Double Arrow and Single Arrow, many participants men-
tioned that the arrows are either hard to interpret or hard to see. Interestingly, the partici-
pants did not mention this problem with the Classic control type. Participants stated, “[. . . ]
the arrows that follow the change of the movement direction are a little more difficult and
a little bit less intuitive to understand than the previous trial [control type Classic]” (P9),
and “I think it is more difficult than the previous control type because it has more abstract
movement [. . . ]” (P25). Besides the curved arrows, many participants found it difficult to
associate the differently colored arrows of the visualization with the different input DoFs
across all three control types. P31 made this clear after using the Single Arrow control type.
They said, “The hardest part working with this method of motion was determining which
direction pushing the analog stick would actually move the robot.”

Across both adaptive control types, participants mentioned the helpfulness of the
arrows. P25 commented, “I think it was confusing at first, but those red and green arrows
helped a lot to understand how the robot moved.” After using the Double Arrow control
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type, P8 mentioned, “Controlling the robot was better than before [control type Single
Arrow], because one could tell more easily where the arm would go, based on the multiple
arrows”. This suggests the possible benefits of having multiple arrows in the Double Arrow
control type.

Cognitive demand: In this theme, we consolidated statements that describe a higher
or lower cognitive demand while using a specific control type. Across all three control
types, some participants mentioned a high cognitive demand. After using the Single Arrow
control type, P17 stated, “This one was more cognitively demanding than the previous
one [control type Classic], maybe because this one did not have straight movement but a
lot of rotational movements”. P18 found it to be “a bit confusing, but okay.” Participants
described the Classic control type as “confusing” (P8) and “counter intuitive” (P18). Using
the Double Arrow control type, P21 expressed the need to focus on the task and added, “I
do not think you could do anything else while using this control method”.

While mentions of lower cognitive demand were equally frequent in total, many
participants found the Classic control type to be “easy” or “easy to understand” (P6, P9,
P25, P27, among others). After using the Classic control type, P39 added, “Here it was best
to intuitively remember where each function was”. This suggests a connection with the
next two themes regarding predictability.

Predictability of mode switching: This theme describes the ability of the participants
to anticipate the next set of movement combinations that the system provides when the
participant executes a mode switch. Many of the difficulties participants had with the
predictability were with the adaptive control types Single Arrow and Double Arrow. When
using the Double Arrow control type, P17 noted, “In this condition, I was not sure whether
cycling through the different types of movements in there always were consistent. That
was very confusing.” We also identified this statement as an expression of an increase
in cognitive demand. For the same control type, P21 added, “I did not know which
combination would be next when I pressed A”. Using the Double Arrow control type, P23
mentioned, “I could not predict the next movement, because I did not understand in
which order the different movements are shown to me next.” We think this participant
confused the ever-changing nature of the adaptive suggestions with the different modes.
Only a few participants mentioned difficulties with predicting the next mode in the Classic
control type. P37 said, “Predictability was uncertain as well, until the later moves where
I had enough training to do it effectively.” Additionally, many participants mentioned
that they had to switch modes many times to find the proper movement they needed in a
given situation, especially with the adaptive control types. Using the Double Arrow control
type, P3 stated, “So if I wanted it to go down I would have to switch through multiple
modes [. . . ]”. Furthermore, using the Double Arrow control type, P5 mentioned, “I had to
click through many modes to find the movement that I thought would bring me closer to
the block”.

Mentions of good predictability were also spread across all three control types, al-
though these were less common. For the Classic control type, P39 stated, “It was very easy
to understand and especially the predictability was the easiest here”. Using the Single Arrow
control type, P37 mentioned, “The ease of understanding the movement was a lot easier as
well. With some of the movement directions being easier to understand and predict before
they show up.” After executing the tasks with the Double Arrow control type, P37 added,
“It seemed more predictable and overall, a more optimum way of doing things”.

Predictability of movement: In contrast to the previous theme, this theme is about
predicting how and where the robot arm will move when using the currently selected
mode. As visualization plays a big part when predicting the robot’s movement, this theme
is related to the first theme about visualization. Only a few participants mentioned the
predictability of movement directly. After using the Double Arrow control type, P4 said, “So
I tried to do one thing and it would do a completely other thing. It felt really unnatural
to try and get to the cube and even to pick it up”. For the Classic control type, P10 stated,
“Because of the immediate predictability [. . . ], it was much easier to control the robot and
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to steer it into different vectors to approach the block in the different positions”. Using
the Single Arrow control type, P10 added, “Therefore I could understand very well how it
would move and how it would work out so I could reach the target”.

Learning: This theme describes the participants’ impression of their learning experi-
ence while using the different control types. Across all three control types, participants
reported that they grew better at performing the tasks over time. For the Classic control
type, P26 stated, “Using this robot arm is pretty easy if you learn how to use them, [. . . ]”.
After using the Double Arrow control type, P25 mentioned, “The predictability of the next
movement directions, I think, is easier as you practice with it, [. . . ]”. For the Single Arrow
control type, P39 said, “The more I practiced, the more confidence I got [. . . ]”.

As participants used the different control types, they noticed a learning effect even
across the different control types. After finishing all trials of all control types, ending
with the Double Arrow control type, P25 said, “The predictability of the next movement
directions, I think, is easier as you practice with it, [. . . ]” After using the Single Arrow
control type, P33 stated, “Maybe I simply have more experience now, if I performed better
in this task in any way”.

Even though many participants felt that they needed more practice with the tasks so
that they are easier to perform, some described that the process of learning felt relatively
easy. When finishing the tasks with the Classic control type, P16 stated, “It was quicker
to get familiar with the system.” P33 expressed some difficulties with the Double Arrow
control type but added, “At least it did not take long to notice a learning effect”.

Additionally, we identified many instances where participants reported that they liked
the second adaptive control type they used better than the one before, regardless of which
control type came first and which came second. This also suggests that a learning effect
is taking place. After using the Double Arrow and then the Single Arrow control types, P27
stated, “I don’t know what is the difference between double arrow and single arrow, but
single arrow is much easier to control”. For the Double Arrow control type, P31 stated, “This
method is a little bit easier to use than the second method [Single Arrow control type], but I
think that was more a function of having a little bit more experience”.

6. Discussion

Initially, our assumptions were that the overall task performance would be best when
using the Single Arrow control type, followed by Double Arrow, and Classic would have
the worst task performance. In comparison to the results of our previous study [6], the
new results are not as pronounced in a realistic virtual 3D setting, at least not without
considering the learning effects.

Regarding the task completion times, both Hypothesis 1 and Hypothesis 2 could
not be substantiated. However, the interaction effect between the starting condition and
task completion times suggests that, with time to learn, the adaptive control types could
perform better than the Classic type. This is corroborated by participants’ reports, as many
participants said that their performance and understanding of the adaptive control types
improved during the tasks. It is also worth noting that more participants experienced the
second adaptive control type as “better” than the first, implying a learning effect not only
for one control type but between control types.

Regarding mode switches, Hypothesis 3 and Hypothesis 4 could be substantiated
by our results. From Classic to Double Arrow, we measured a significant reduction in
the number of mode switches necessary to perform the task. In contrast, there was no
significant difference between Double Arrow and Single Arrow. Interestingly, this contrasts
the participants’ opinions that they felt they had to switch many times to get to a mode
that performed a movement they expected. However, this reduction in mode switches
might be of higher benefit for people with motor impairments than for non-disabled people.
Switching modes using a button requires a certain level of dexterity and causes the user to
constantly divert their attention away from the original task, so more mode switches can
cause more fatigue and time consumption, as explained by Herlant et al. [5]. The impact
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of this difference in the number of mode switches on people with motor impairments can
thus only be evaluated in a future study with participants with motor impairments.

Regarding workload, Hypothesis 5 and Hypothesis 6 could not be substantiated. This
could have multiple reasons. For example, the participants expressed that the predictability
of the adaptive control types was low and that they did not necessarily know how the robot
would move, even with the arrows. These impressions, combined with the statements
regarding positive learning effects and overall high cognitive demand, could mean that
with increased exposure to the adaptive control types, users could have a lower workload
than with Classic.

According to some participants, using visual cues in a 3D environment caused prob-
lems with perspective. This made it difficult for them to predict how the robot would
move, even with the visual cues provided by the arrows. To mitigate this problem, our
concept might be combined with a “digital twin” of the robot arm, which demonstrates the
movement virtually before the real robot performs it physically [31].

To improve the overall predictability of the system, both regarding the suggested
modes and the movements of the robot, a training mode could be implemented. In this
mode, the users would be able to teach the system the way they want specific tasks to
be performed [32]. This should increase predictability, as the participants would know
the proposed movements will be (partially) based on their own instructions. In addition,
Spatial Augmented Reality can help the user’s understanding of the robot’s perception, e.g.,
which object the robot assumes the user wants to interact with [33]. In combination with
the already implemented visual cues, this can help the users predict the robot’s movement
more accurately.

After further research and refinement of our proposed control methods, they might
allow assistive robot arms to help with ADLs that currently require the help of caregivers or
more complex robots, such as dressing [34] or bathing [35]. The fact that the users always
stay in control of the robot while the robot performs more fluent, natural movements could
also allow people with motor impairments to use the robot in social situations, e.g., at the
workplace [36].

7. Limitations

Our study did not specifically involve or focus on people with motor impairments.
Thus, we need to discuss how our results can be transferred to this target group. First,
the absolute performance measures cannot be generalized to this target group. Individual
differences are usually high within people with motor impairments due to varying degrees
of physical limitations [37]. However, the study did not aim to provide absolute results
in terms of performance but rather an insight into the relative performance of the three
different control types. Since they all rely on the same physical interaction concept, we
believe that the way motor impairments might affect performance should be comparable
for all three control types. Second, Augmented Reality is necessary to provide the user
with the type of visual feedback we implemented for our study. We are aware from our
prior research that current-generation AR-HMDs are often not accessible to people with
motor impairments. AR-HMDs such as the Microsoft HoloLens are too heavy and conflict
too often with health-supporting systems [38]. We conducted this research with the firm
belief that future AR hardware solutions will cope with requirements for people with motor
impairments. We acknowledge, however, that this might make the visual feedback designs
inapplicable for real-world systems at this point in time or the immediate future.

Additionally, our study involved the use of the Oculus Quest system and the Oculus
Quest Motion Controller as the only input device. In the real world, however, assistive robot
arms can be controlled with a wide range of input devices depending on the abilities and
preferences of the person using them. We specifically only used the most basic functionality
of the Motion Controller (the control stick and one button) to ensure that the results are
also applicable when using a different input devices with two input axes. It is still possible

[VIII]

132



Technologies 2022, 10, 30 21 of 23

that the use of different input devices might add more complexity to the overall usage of
such a system.

Another limitation is the nature of our study being performed as a remote study. The
level of control is limited for such a method, which means that the level of engagement of
participants can vary. We addressed this limitation by keeping the duration of the study
relatively short (30–45 min) and designing the task so that we could easily identify cases
in which participants did not follow the study protocol. Our analysis further shows that
only a few participants were identified as extreme outliers. In addition, the focus on one
set of hardware devices made it possible to harmonize and control the kind of immersive
experience that participants engaged with, further reducing potential biasing effects, such
as low frame rates or other hardware-performance-related issues. Given the current COVID-
19 pandemic, we believe that our study setup is sensible and still able to provide robust
results. Still, we aim to replicate at least part of the study in a lab environment and with
people with motor impairments in the future.

It is possible that our study does not provide insight into the quality of adaptive
control through the means of a CNN. We simulated the adaptive control method to be
able to have full control in the study. Otherwise, imperfect DoF mappings would have
overshadowed the potential effects of the different visualizations, thus making it difficult
to draw conclusions. As discussed, we believe that our approach significantly decreases
the possibility of unpredictable behavior while having little impact on the applicability of
our findings to a system using a CNN, as long as this CNN is able to perform at a high
level of quality regarding the DoF mappings.

8. Conclusions

We conducted a study exploring and evaluating the user experience of an adaptive
control concept for assistive robot arms in a realistic virtual 3D environment. Our results
suggest a significant benefit of such an adaptive control concept regarding the necessary
number of mode switches. However, task completion times and workload do not change
when using an adaptive control concept without more intensive training.

By evaluating the interaction between the starting conditions and task completion
times and applying a thematic analysis of qualitative data, we conclude that there could
be a significant benefit of training that would reveal the potential of an adaptive control
concept. Therefore, future work should consider longer training sessions before evaluating
task completion times and workload. The targeted user group of assistive robot arms
would use such devices not just once but daily and over extended periods and thus have
more time to learn how to use the device. Therefore it is important to assess whether the
adaptive control concept might have high cognitive demand in the beginning but is better
than the Classic approach once the users are trained.

Our results seem to suggest that there is little to no difference between Single Arrow
and Double Arrow regarding how well they convey the robots currently active DoF mapping
to the users. However, an improved visualization could reduce the overall high cognitive
demand users have experienced. Therefore, future work will also focus on different types
of visualizations, which will not be restricted to MR-headsets and overlayed arrows but
could (additionally) show the robot’s future path using spatial Augmented Reality [39].

Future work should (whenever possible) include participants with motor impairments
since their experience is vital in designing assistive technology [4]. The impact of a lower
number of mode switches enabled by an adaptive control concept should be especially
evaluated with people with motor impairments. This could significantly improve their
execution of activities of daily living.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/technologies10010030/s1. Video S1: An Overview of the Envi-
ronment and Control Types.
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Fig. 1. Setup with (a) a user’s view in the Virtual Reality (VR) simulation environment, (b) setup of interaction
with a physical robot, and (c) a combined view of physical robot and visual cues in Mixed Reality (MR).

With the ongoing e�orts to empower people with mobility impairments and the increase in technological
acceptance by the general public, assistive technologies, such as collaborative robotic arms, are gaining
popularity. Yet, their widespread success is limited by usability issues, speci�cally the disparity between user
input and software control along the autonomy continuum. To address this, shared control concepts provide
opportunities to combine the targeted increase of user autonomy with a certain level of computer assistance.
This paper presents the free and open-source AdaptiX XR framework for developing and evaluating shared
control applications in a high-resolution simulation environment. The initial framework consists of a simulated
robotic arm with an example scenario in Virtual Reality (VR), multiple standard control interfaces, and a
specialized recording/replay system. AdaptiX can easily be extended for speci�c research needs, allowing
Human-Robot Interaction (HRI) researchers to rapidly design and test novel interaction methods, intervention
strategies, and multi-modal feedback techniques, without requiring an actual physical robotic arm during
the early phases of ideation, prototyping, and evaluation. Also, a Robot Operating System (ROS) integration
enables the controlling of a real robotic arm in a PhysicalTwin approach without any simulation-reality gap.
Here, we review the capabilities and limitations of AdaptiX in detail and present three bodies of research
based on the framework. AdaptiX can be accessed at https://adaptix.robot-research.de.
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1 INTRODUCTION
Robotic arms as assistive technologies are a powerful tool to increase self-su�ciency in people with
limited mobility [33, 44], as they facilitate the performance of Activities of Daily Living (ADLs)
– usually involving grasping and manipulating objects in their environment – without human
assistance [50]. However, a frequent point of contention is the assistive robot’s autonomy level. The
reduction of user interaction to just oversight with purely autonomous systems elicits stress [51]
and feelings of distrust in their users [67]. On the other side of the autonomy spectrum, manual
controls can be challenging - or even impossible - to operate, depending on the signi�cance and
type of impairment. Shared control – a combination of manual user control through standard input
devices plus algorithmic support through computer software adjusting the resulting motion – may
have the potential to mitigate both concerns [1]. Here, both the user and the robot share a task on
the operational level, enabling people with motor impairments to get involved in their assistance.
As a result, such approaches can increase the feeling of independence while improving ease of use
compared to manual controls [17].
A characteristic real-world scenario, motivated by our research, has an assistive robotic arm

(e.g., a Kinova Jaco 2) attached to a wheelchair to support the user in ADLs. Here, the user is
challenged with operating six or more Degrees-of-Freedom (DoFs), which requires complex input
devices or time-consuming and confusing mode switches. This potentially results in increased task
completion time and user frustration [21]. Addressing this, shared control systems can facilitate
more straightforward and accessible robot operation. However, they may require well-designed
communication of robot (motion) intent, so that the user retains awareness and understands the
level of support they get from the system [45]. Also, di�erent users might need distinct input
devices or require multi-modal input to account for varying abilities.

Based on our experiences, we identi�ed several challenges that currently in�uence and potentially
impede the e�ective development of shared control approaches:

• Shared control systems for assistive technologies still pose open questions requiring consid-
erable experimentation, tweaking and balancing between user and robot interaction [34].

• While much research explored robot motion intent, there is little insight into what works
best in which situation and for which type of user. In assistive robotics, the visualization and
feedback modality must be carefully adapted to the user’s needs and abilities as there is no
“one size �ts all” solution [23].

• Similarly, suitable input devicesmay vary between users. Depending on individual preferences
and capabilities, multi-modal input or the choice between di�erent input modalities may be
required [2].

• Bringing robots and humans physically together during research studies is di�cult due to
the laborious and costly transportation, safety concerns with robots and general availability
of the user group [6].
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Contribution. To allow researchers, designers and developers to address these challenges
holistically and �exibly, we present AdaptiX – a free, open-source XR framework 1. Aimed at
Design and Development (D&D), AdaptiX combines a physical robot implementation with a
3D simulation environment. The simulation approach (analogous to simulations in industrial
settings [37, 42, 59]) mitigates the assistive robotic arm’s bulky, expensive, and complex nature. It
also makes the integration of visualization feedback or di�erent input modalities easier to explore
and test, while a Robot Operating System (ROS) interface allows the direct transfer to the real
robot. Testing new interaction and control options becomes much less time-consuming while
simultaneously excluding potentially dangerous close-contact situations with users before glitches
are managed [44]. In total, the framework facilitates the development and evaluation of assistive
robot control applications in-silico and creates a practical and e�ective step between ideation,
development, and evaluation, allowing HRI researchers more �exibility and facilitating e�cient
resource usage.

To summarize, the AdaptiX framework contributes the following:
• AdaptiX allows researchers to rapidly design and test novel visualization and interaction
methods.

• The framework integrates an initial concept and implementation of a shared control approach.
• The integrated ROS interface facilitates connection to a non-simulated – physical – robotic
arm to perform bidirectional interactions and data.

• The framework’s concept enables a code-less trajectory programming by hand-guiding the
simulated or physical assistive robotic arm to the speci�c location and saving the position
and orientation of the Tool Center Point (TCP).

• Recording TCP data enables replaying user-controlled robot movements and results in a fully
customizable system. Options include changing speci�c details during replaying, such as
repositioning cameras or re-rendering background scenes.

• Finally, the entire continuum of Mixed Reality (MR) can be exploited in the AdaptiX envi-
ronment. This allows applications in Virtual Reality (VR), pure screen space, Augmented
Reality (AR), simultaneous simulation and reality, and pure reality (cf. the virtuality continuum
of Milgram and Kishino [41]).

2 RELATED WORK
While robotic arms are a particularly useful and versatile subset of assistive technologies, their
widespread success is limited by a number of design challenges concerning the interaction with
their human user. In recent years, a growing body of research addressed these concerns and
associated optimization options to increase their usability, e.g., [12, 20, 34]. During the AdaptiX
development process, we aimed to include functionality to address the challenges of shared control
optimization [19], intent communication [45], and attention guidance [48].

2.1 Shared Control for Assistive Robots
Current shared control systems operate along an autonomy continuum, respectively balancing user
input and system adjustments. At one extreme, the systems tend to be heavily manual, with only
minor adjustments to the user’s input [56]. On the other end are systems where users primarily
provide high-level commands for the robot to execute [60]. A number of di�erent approaches –
including time-optimal [21] and blended mode switching [16], shared-control-templates [52] and
body-machine-interfaces [29] – are currently employed in various settings.

1AdaptiX framework. https://adaptix.robot-research.de, last retrieved May 20, 2024.
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A fundamentally di�erent approach is the shared control system proposed by Goldau and Frese
[19]. Their concept combines a robotic arm’s cardinal DoFs according to the current situation and
maps them to a low-DoF input device. The mapping is accomplished by attaching a camera to the
robotic arm’s gripper and training a Convolutional Neural Network (CNN) by having people without
motor impairments perform ADLs [19] – similar to the learning-by-demonstration approach for
autonomous robots by Canal et al. [7]. The CNN returns a set of newly mapped DoFs, ranked
by their assumed likeliness based on the CNN for the given situation, allowing users to access a
variety of movements for each situation. In addition, the CNN-based approach allows the system
to be easily extendable as the same system can be trained to discriminate between many di�erent
situations – making it a viable concept for day-to-day use. Goldau and Frese [19] conducted a
proof-of-concept study comparing the control of a simulated 2D robot with manual or CNN-based
controls. Task execution was faster with their proposed concept; however, users experienced it as
more complex than manual controls [19].

Our framework AdaptiX is in�uenced by Goldau and Frese’s approach, but extends it from 2D to
3D space. This increases the number of possible DoFs, which allows for an accurate representation
of ADLs in the framework. By adding functionality, visualizations, and a ROS integration, AdaptiX
can be used to develop and evaluate novel interaction control methods based on this approach for
shared control, which we refer to as Adaptive DoF Mapping Control (ADMC).

2.2 Robot Motion Intent
Regardless of the speci�c interaction details, it is necessary to e�ectively communicate the intended
assistance provided by the (semi-)autonomous system [4]. Clear communication between robots
and humans enhances the shared control system’s predictability, avoids accidents, and increases
user acceptance.
A crucial element of the D&D process of robotic devices is, therefore, the testing of intent

communication methods. Choreobot – an interactive, online, and visual dashboard – proposed by
van Deurzen et al. [61] supports researchers and developers to identify where and when adding
intelligibility to the interface design of a robotic system improves the predictability, trust, safety,
usability, and acceptance. Moreover, Pascher et al. [45] provide an extensive overview of the various
types of visualization and modalities frequently used in communicating robot motion intent. These
range from auditory [10] and haptic [9] modalities to anthropomorphizing the robot and using its
gaze [38] or gestures [18]. Their �ndings are substantiated by Holthaus et al. [24], who used an
ethnographic approach to derive a comprehensive communication typology.
While all these intent communication modalities are viable, visual representations of future

movements are often quoted as less workload-intense for the end-user [13]. AR is, therefore,
unsurprisingly a frequently used tool to convey detailed motion intent [8, 22, 53, 63, 65], allowing
interactions to become more intuitive and natural to humans [36]. Suzuki et al. emphasize the
bene�ts of AR-based visualizations for communicating movement trajectories or the internal state
of the robot [58].

The visual feedback employed by AdaptiX mimics AR in a VR environment with directional cues
registered in 3D space. This approach allows the user to understand di�erent movement directions
for the actual control and the suggested DoF combinations. To streamline understanding the control
methods, one of our primary approaches is the usage of arrows – a straightforward and common
visualization technique to communicate motion intent [54, 55, 63].

2.3 Feedback Modalities for User A�ention Guidance
When creating systems using shared control, it is crucial to guide the user’s focus to the assistance
the robot is o�ering [49]. This guidance is particularly important if either party is moving the
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robot in a way that could lead to collisions or worsen the situation. To enhance the predictability
of shared control systems, various feedback modalities have been proposed to guide user attention
as a secondary feedback mechanism to AR. The goal is to provide a feedback solution that results
in short reaction times, enabling users to quickly direct their focus to the information provided by
the robot.
In the related discipline of autonomous driving systems, if the vehicle encounters a situation

it was not programmed or trained to handle, it will issue a Take-Over-Request (TOR). This TOR
prompts the driver to take manual control of the vehicle to prevent a collision or to drive in areas
the vehicle cannot handle autonomously.
Auditory, visual, and tactile/haptic modalities are commonly used for TORs [64] – either as a

single sensory input [49] or a combination of multiple variants [48]. Simulation studies, along with
research on reaction times to di�erent sensory stimuli, indicate that multi-modal feedback results
in the lowest possible reaction times in shared control systems [5, 14, 31].

Implementing these feedback methods into existing assistive robot systems would be straightfor-
ward as the necessary output devices – like screens, speakers, or vibration motors – are commonly
already present. To allow researchers to evaluate the bene�ts of the di�erent modalities, AdaptiX
includes three modes for attention guiding: visual, auditory, and tactile/haptic. Developers can
either choose one modality or follow a multi-modal approach.

3 FRAMEWORK CONCEPT
The AdaptiX XR framework facilitates the development and evaluation of HRI shared control
applications in an easy-to-use, high-resolution transitional MR environment. Equipped with a
VR simulation environment containing a virtual Kinova Jaco 2 and ample customization options,
researchers can streamline their D&D process while simultaneously reducing overhead and boosting
e�ciency. Figure 2 provides an overview of the framework’s architecture.

Fig. 2. Overview of AdaptiX ’ architecture, illustrating each component, their directional communication, and
the crossover from and to the framework. The user input is either used for Cartesian Control or Adaptive DoF
Mapping Control (ADMC). For ADMC, either a CNN-based or script-based rule engine can be selected.

In addition to an Cartesian robot control, we propose ADMC as an initial shared control approach,
using suggestions by a rule engine (e.g., a CNN or script-based approach) to be controlled by the
user. ADMC is implemented directly into the Unreal Engine to enable researchers and developers
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to fully customize the control methods, systems behavior, and feedback techniques by coding in
C++ or Blueprints.
AdaptiX supports several pre-implemented input devices and provides an adapter class for an

easy development and implementation of further input devices. This supports researchers and
developers to easy implement their ideas and concepts. The integrated ROS interface facilitates
connection to a non-simulated – physical – robotic arm to perform bidirectional interactions and
data exchange in a DigitalTwin and PhysicalTwin approach.

AdaptiX enables e�ortless trajectory programming by manually guiding the TCP of a simulated
or physical robotic arm to a desired location and recording its position and orientation. Recorded
data of user-controlled robot movements can be replayed. O�ering the adjustment of speci�c details,
such as camera positions and background scenes, results in a highly customizable system.

The aim is to provide a modular and extensible framework so that research teams do not need to
start from scratch when implementing their shared control applications.

3.1 Adaptive DoF Mapping Control (ADMC)
For the adaptive DoF mapping – referred to as ADMC – of the robotic arm, the goal is to present
a set of DoF mappings ordered based on their e�ectiveness in accomplishing the pick-and-place
task used in the experiment. The concept of “usefulness” assumes that maximizing the cardinal
DoFs of the robot assigned to an input-DoF while progressing towards the next goal is the most
advantageous option.
This DoF mapping, referred to as the optimal suggestion, is assumed to be the best choice due

to a signi�cant reduction in the need for mode switches when multiple DoFs are combined into a
single movement. The more DoFs are combined (assuming it is sensible for the given situation), the
fewer mode switches are required. As a result, the DoF mappings are ordered based on the number
of DoFs they combine.
In addition to the optimal suggestion, the second suggestion is a selection of an orthogonal

variation of the �rst suggestion, which has the highest probability and most variation in spatial
direction and keeps the number of combined DoFs unchanged. This secondary suggestion is likely
useful to users as they can utilize it to adjust their position while maintaining a sensible orientation
toward the next goal. The following DoF mappings were used (see Figure 3):

(a) (b) (c) (d) (e) (f)

Fig. 3. Suggestions as Visualized in the ADMC, (a) Continue previous movement, (b) Optimal Suggestion, (c)
Adjustment Suggestion, (d) Translation Suggestion, (e) Rotation Suggestion, (f) Gripper Suggestion. Colors:
Bright cyan arrow: Currently active DoF mapping. Dark blue arrow: Next most likely DoF mapping.

(1) Optimal Suggestion: Combining translation, rotation, and �nger movement [opening and
closing] into one suggestion, causing the gripper to move towards the target, pick it up, or
release it on the intended surface.
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(2) Adjustment Suggestion: An orthogonal suggestion based on (1) but excluding the �nger
movement. Allows the users to adjust the gripper’s position while still being correctly
orientated.

(3) Translation Suggestion: A pure translation towards the next target, disregarding any rotation.
(4) Rotation Suggestion: A pure rotation towards the next target disregarding any translation.
(5) Gripper Suggestion: Opening or closing of the gripper’s �ngers.

3.1.1 CNN-based Approach. For the CNN approach, a color-and-depth camera is attached to the
gripper of an assistive robotic arm. The live video feed is transmitted to a CNN, which is trained
using data collected from non-impaired individuals performing ADLs using the robotic arm along
with a high-DoF input device. The CNN does not need a model of the environment to provide these
mappings. Principal Component Analysis (PCA) is employed to transform the CNN’s output into a
matrix D̂, where each column represents a combination of cardinal DoFs along which the robotic
arm can move.
Next, a subset of D̂ is selected, containing as many columns as the number of DoFs provided

by the input device. This selected subset is referred to as D, and it serves to map input-DoFs to
output-DoFs. When an input-DoF is engaged, the robot’s movements are determined by the values
in the corresponding vector of D, which proportionally activate the robot’s cardinal DoFs. A mode
switch is de�ned as the exchange of D with a di�erent subset of D̂. This enables the system to switch
between various mappings of input-DoFs to output-DoFs, adapting the robot’s control according
to the user’s needs and preferences. A visual representation of this control pipeline is depicted in
Figure 4a.
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Fig. 4. Concept of adaptive DoF mapping control. (a) Control pipeline for proposed adaptive shared control
and (b)matrix representation of DoF mappings: Columns represent input-DoFs. Rows represent output-DoFs.
Subsets represent modes. Two empty columns were added to represent zero movement mappings in Finger
Mode.

D̂ is a square matrix with dimensions based on the number of cardinal DoFs available on the
robot to be controlled. In the case of the Kinova Jaco 2 [30], this results in a 7 × 7 matrix. This
matrix represents a mapping of input-DoFs to output-DoFs when the number of DoFs in both cases
is equal. The values in each column, ranging from -1 to 1, indicate the proportion with which the
speci�c cardinal DoF is utilized when engaging the corresponding input-DoF.

By de�ning D̂ as an identity matrix, each input-DoF is mapped to a single output-DoF. Selecting
an equal number of columns from D̂ to form matrix D allows for manual control with mode
switching along cardinal DoFs. Moreover, this representation enables the combination of multiple
cardinal movements into arbitrary output DoF mappings. For example, a (transposed) column of
(0.5, 0.5, 0, 0, 0, 0, 0) would result in diagonal movement along the X- and Y-Axes of the robot. Such
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combinations enable the o�ering of complex movements with di�erent proportions depending on
the situation, enhancing the control options available to users. The identity matrix for a Kinova
Jaco 2 with a 3-DoFs joystick is illustrated in Figure 4b.

3.1.2 Script-based Approach. As an alternative rule engine for our ADMC concept, we implemented
a task-speci�c script. This approach eliminates potential biases that a more generic, but currently
limitedmethod like a CNN-based control might introduce. It is essential to note that our task-speci�c
script is e�ective only in a controlled experimental environment.

The task-speci�c script assesses the end e�ector’s current position, rotation, and �nger position
relative to a target, allowing it to adaptively calculate the matrix D̂. This script recommends optimal
movements to pick up an object and place it onto a target drop area, maximizing the combination
of as many DoFs as possible. Additionally, it provides other DoF combinations that may be less
bene�cial to mimic the idea that each subsequent column in D̂ has a decreasing likelihood of
being useful. These additional DoF mappings are ordered by the number of combined DoFs in a
decreasing manner.

To validate the e�ectiveness of this approach, we conducted pilot tests, comparing it to aWizard-
of-Oz method. In this scenario, a human “simulated a CNN” to explore user interaction with such a
system.

3.1.3 Point of Time to Communicate the Suggestion. Our ADMC concept uses an adaptive DoF
mapping system to recommend DoF mappings to the users depending on the current situation. The
system visualizes the currently active DoF mapping as a bright cyan and the suggestion as a dark
blue arrow (see Figure 3). This suggestion can be communicated – based on the the con�guration –
either continuously or only if the next most likely movement direction di�ers from the currently
active DoF mapping by a certain threshold.
To calculate this threshold – the di�erence between the currently active and new most likely

DoF mapping –, cosine similarity [57] is used, ranging from exact alignment [0%] to total opposite
direction [100%]. The formula for cosine similarity of two n-dimensional vectors is de�ned as:

cosine similarity = cos
(
®ė, ®Ę

)
=

®ė®Ę
∥®ė∥∥®Ę ∥

=

∑Ĥ
ğ=1 ėğĘğ√∑Ĥ

ğ=1 (ėğ )2
√∑Ĥ

ğ=1 (Ęğ )2
(1)

To implement a di�erence value, the cosine similarity needs to be transformed. As a cosine
similarity of -1 indicates completely opposed vectors, the di�erence value needs to return 1 – i.e.
the maximum possible di�erence – for a cosine similarity value of -1. A cosine similarity of 1,
indicating exact similarity, should return a di�erence value of 0 – i.e. no di�erence. Perpendicular
vectors with cosine similarity 0 should return a di�erence value of 0.5 – i.e. a 50% di�erence. To
calculate the di�erence value d, the following formula is used:

di�erence d = 1 −
cos

(
®ė, ®Ę

)
+ 1

2 (2)

This di�erence value represents the di�erence between two vectors. While the user moves the
robot with an active DoF mapping, the adaptive DoF mapping system reevaluates the situation and
calculates new suggested DoF mappings. The default di�erence value is set to 0.2 (20% di�erence
between currently active and new most likely DoF mapping).

3.2 Full Mixed Reality Continuum
In our framework, we created an environment in which the entire continuum of MR is exploitable.
This extends the use of AdaptiX to new scenarios and environments – including the real world. The

Proc. ACM Hum.-Comput. Interact., Vol. 8, No. EICS, Article 244. Publication date: June 2024.

[IX]

143



AdaptiX – A Transitional XR Framework for Assistive Robotics 244:9

(a) (b) (c)

(d) (e) (f)

Fig. 5. MR continuum with (a) only the real robotic arm in real environment, (b) augmenting of directional
cues in the real environment with the real robotic arm, (c) additional visualizing the gripper and base of the
virtual robotic arm in the real environment, (d) visualizing the simulated robotic arm in the real environment,
(e) visualizing the real robotic arm in the virtual environment, and (f) visualizing the simulated robotic arm
in the virtual environment.

virtual and real environments of the robotic arm are aligned, allowing researchers to seamlessly
switch between the user controlling the real and virtual robot. The level of MR can be adjusted in
various steps (cf. the virtuality continuum of Milgram and Kishino [41]).

The MR environment setups include:
(1) the completely real environment with the real robotic arm,
(2) the real environment extended with visual cues,
(3) the real environment into which the virtual robot is transferred and displayed (with and

without visual cues),
(4) the virtual environment into which the real robot is transferred and displayed (with and

without visual cues),
(5) the completely virtual environment with the virtual robotic arm.
A comparison of the user’s view in reality and simulation can be seen in Figure 5. MR continuum

level (1) is suitable for study baseline-condition, without any multi-modal feedback to the user. In
level (2) an AR visualization technique is mimicked, showing the whole physical setup augmented by
basic cues. Especially level (3) and (4) enable customizing either the robot itself or the environment
to extent/exchange the physical setup but still not loosing the context. In (3) users can interact
with a totally new or customized robot while being in a familiar environment. World’s distractions
can be excluded in (4) while the the original robot is presented. Finally, level (5) provides a VR
environment that can be fully customized.

3.3 Interfaces
We designed AdaptiX to facilitate the comparison of di�erent interaction designs, intervention

strategies, and feedback techniques for shared robot control. The initial version of the framework
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includes interface types for extending user input, ROS integration, and multi-modal feedback.
However, this baseline can easily be customized and extended by future development.
3.3.1 User Input. We provide a standard control approach where pressing a keyboard button moves
the end e�ector along cardinal DoFs (x, y, z, roll, pitch, yaw, opening and closing the gripper). Using
build-in functionalities, the designated keyboard input can easily be adjusted to other input devices
like gamepads, joysticks, or customized assistive input appliances.

In contrast to tele-operating the robotic arm, a follow-me approach for any trackable object in 3D
space – e.g., the user’s handheld VR motion controller – was implemented. The robot’s end e�ector
directly follows the movement of the trackable object, which corresponds functionally to direct
control. This can be used to generate high-dimensional input and record intended behavior quickly,
providing an easy way of interacting and controlling the robot, especially for inexperienced users.

3.3.2 ROS Integration. The ROS integration allows for a bidirectional exchange of information
between the simulation and a real robot, mirroring the robot’s state in-silico and vice versa. Figure 6
shows the involved components: a ROS bridge facilitates the multi-device connection between the
framework and the real robot while exchanging robot data. On the ROS side, the messages for the
arm position and orientation control and the values for the angle-accurate control of the gripper
�ngers are read in via the ROS subscriber node. They are then processed, and the robot arm and
gripper are controlled through our action client. In addition, the joint angles, the TCP, and the
position of all three gripper �ngers are published via ROS, which are then input by our Unreal
Engine framework. The virtual and real robots are synchronized via ROS every 0.1 seconds.

Based on this, our framework provides – depending on the speci�c context – both a DigitalTwin
and PhysicalTwin approach, allowing the control of either with the other.

Fig. 6. Component connections of the ROS interface for mixed reality.

3.3.3 Multi-Modal Feedback. To communicate any combination of DoFs, our framework supports
several visual cues to illustrate the intended movement trajectory and provides multi-modal
feedback extensions via audio and haptic-tactile feedback. Visual feedback can be either provided
dynamically attached to the virtual/physical robot’s end e�ector, stationary in the world, or attached
to the user’s view.

AdaptiX aims to support the development of novel multi-modal interaction and feedback designs
either in the pure VR simulation testbed environment or by interacting with a real robot in MR,
which mimics an AR setting due to the stereoscopic video-feed. Moreover, it is also possible to
show the real robot in our VR simulation environment instead of the simulated one.
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Figure 7 shows three exemplary AR-style visualizations provided by the framework, including (a)
a robotic ghost overlay, (b) discrete waypoints in 3D, and (c) a variety of multidimensional arrows.
Though varying in design, these visualizations can e�ectively communicate the robot’s motion
intent to the user.

Ghost: A visualization of robot motion intent by showing an additional version of the robot (or
speci�c components) registered in 3D space, in another color and/or opacity. These visualizations
communicate the exact position and orientation a robot at a given time, behaving precisely as
though the real robot had been moved this way.
Waypoints: This visualization technique augments the position of a robot (or in our case, the

gripper of the robotic arm) in 3D space at a certain point in the future. Usually, the robot navigates
linearly between theseWaypoints, which increases predictability.
Arrow: Among visualizations arguably the most basic but certainly also the most familiar (as

seen in tra�c navigation systems, road signs, and on keyboards). Arrows are found both in straight
and curved varieties, where curved arrows indicate a rotation. Given the abundance of Arrows in
daily life, it makes sense that many robot motion intent visualizations use them.
Classic: This visualization also uses Arrows, but in our prototype they are used as a baseline

condition to evaluate adaptive and non-adaptive controls. Here, as with the standard input device
Kinova Jaco 2, two axes can be controlled simultaneously and the user has to choose between
di�erent translations and rotations by mode-switching.

(a) Ghost (b) Waypoints (c) Arrows

Fig. 7. Visualization examples pre-implemented in the framework.

All interfaces are modular, enabling quick adaptations and switching between variations. This
�exibility allows for studies with clean methodologies and easy comparisons without additional
overhead. The community is invited to extend the implementations with any interfaces or control
methods desired for their research.

3.4 Recording and Replay
AdaptiX contains an easy-to-use general-purpose system to record, store and replay simulation data,
including detailed information about robot states, execution times, or the states of various objects
in the environment. The recording system generates Comma-separated values (CSV) text �les,
which can be accessed with any data manipulation software (e.g., Python or MATLAB). The added
output functionality di�ers signi�cantly from the replaying system provided by the underlying
Unreal Engine, which is mainly designed for visual replays and – among other things – does not
support a CSV �le format.
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In addition, AdaptiX ’s recording and replaying system is entirely customizable. Camera re-
positioning or re-rendering background scene options are included in the initial version. By default,
the recording system tracks the user’s view, the robotic arm, and all moveable actors in the virtual
environment. All other objects are assumed to be stationary, thus part of the level, and ignored as
such. This approach allows for the randomization of background scenes by re-rendering.

The system stores the assigned virtual meshes, scales, possible segmentation tags for each tracked
object, and the complete pose data per frame. During the replay process, all objects that were
initially recorded in a speci�c level are swapped with the corresponding data stored in the loaded
recording. However, if a di�erent scene is being loaded, the objects from that scene are used instead.
In every subsequent frame, all objects are positioned at their respective position until the loaded
recording has �nished. The system permits custom code to be run at the end of each loaded frame,
thus enabling de-bugging and data rendering during replays.

Overall, AdaptiX facilitates the lightweight storage of recordings as CSV �les with the option to
render and store complex and large-scale data (e.g., images or videos) for subsequent evaluation.
This lightweight approach is particularly useful when deploying experiments on external devices
or recording extensive datasets.

4 FRAMEWORK IMPLEMENTATION
The AdaptiX simulation environment is based on the game engine Unreal Engine 4.27 [15]. The

advanced real-time 3D photoreal visuals and immersive experiences provide a suitable foundation
for our framework, and assets for future extensions are readily available. Unreal Engine 4.27 includes
integrated options for various hardware setups, thus enabling the framework to be deployed on
di�erent operating systems while utilizing most currently available VR/MR/AR headsets, gamepads,
and joysticks. At the time of writing, Unreal Engine 4.27 is free to use, has a considerable user space,
and allows unrestricted publications of non-revenue generating research products like the AdaptiX
framework. Detailed implementation descriptions can be accessed in the README provided in the
repository at https://adaptix.robot-research.de.

Fig. 8. Example scenario provided in AdaptiX including a table, a virtual Kinova Jaco 2 robotic arm and colored
blocks on the tabletop.
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4.1 Simulation Environment
The AdaptiX default scenario centers on the photogrammetry scan of an actual room that contains
a table with an attached virtual robotic arm (see Figure 8). A simulated camera is mounted on the
arm’s gripper. We added a toggle-o� option to hide the camera from the user’s view.

The framework includes a straightforward testbed scenario for pick-and-place operations, mim-
icking the basic principles of most ADLs. The simulation centers around a red surface as a drop
target and a blue block as the to-be-manipulated object. Once the object has been successfully
placed, the setup randomly re-positions the blue block on the table surface, and the task can be
repeated.
We optimized the robotic arm simulation for operation via a VR motion controller with an

analog stick, several playable buttons, and motion capture capabilities (e.g., Meta Quest 2 [39]).
These options provide a workable foundation to implement and test diverse interaction concepts,
including adaptive concepts which can be con�gured to match the individual physical abilities of
the intended user.

By incorporating the Varjo XR-3 [62] – a particularly high-resolution XR-Head-Mounted Display
(HMD) – we implemented a transitional MR environment. Using two HTC VIVE trackers [26],
the virtual and real worlds are synchronized so that the robots’ working areas are identical. By
including the HTC VIVE motion controller [25], it is then possible to control the physical robot
directly via the PhysicalTwin approach of AdaptiX (see Figure 1).

The virtual robotic arm is designed as a modular entity, allowing easy integration to new levels
following the Unreal Engine’s ActorBlueprint class structure.

4.1.1 Simulated Robotic Arm. The commercially available Kinova Jaco 2 assistive robotic arm [30]
is speci�cally designed as an assistive device for people with motor impairments. It is frequently
used by a) the target audience and b) researchers – e.g., [3, 21] – during HRI studies, hence the
suitability for inclusion in AdaptiX.

We designed the simulated Kinova Jaco 2 as close as possible to the actual product, using virtual
meshes generated directly from computer-aided design (CAD) �les provided by the manufacturer.
Much like in reality, the virtual arm consists of a series of individual links connected by angular
joints as shown in the annotated rendering of the assembled model Figure 9.

AsAdaptiX – including the operation of its simulated robotic arm – is optimized for HRI studies, it
focuses on user interaction rather than low-level robot control, whilst also able to incorporate those.
Hence, rather than following the standard base-up control, the simulated arm moves in reverse:
the user’s input directly controls the end e�ector’s motion; the connected joints are positioned to
connect the end e�ector with the base.Each intermediate joint is modeled as a dampened spring
with the links una�ected by gravity. This also resolves the redundancy, i.e., joint angle ambiguity a
7-jointed robot has.

Fig. 9. Virtual Robotic Arm with Physics Constraints: purple capsules represent links, green discs represent
angular constraints.
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This approach allows for nearly arbitrary motion of the end e�ector and a semi-realistic in-
teraction of the arm with the environment. As a bene�cial side e�ect, developers can disconnect
the end e�ector from the rest of the arm and allow the user to control a free-�oating robot hand
without any constraints. However, the internal physics engine to realistically handle collisions and
interactions between the end e�ector and the environment is still active.

Likewise, we based the grasp concept on a custom interaction design for robotic grasping rather
than physics. Physics-based grasping in a virtual environment is a challenging task [27] and would
require substantial preparation and asset �ne-tuning from future developers who use the framework.
Instead, we de�ned a logic-based approach that we consider su�ciently realistic for shared control
applications: an object is regarded as grasped once it has contact with two opposite �ngers while
closing the gripper until the �ngers open again. The grasped object is rigidly attached to the end
e�ector, keeping its relative position stable and moving alongside the end e�ector until released.

4.1.2 Simulated Camera System. Computer-aided robot control usually requires a camera system –
or a comparable sensor – to measure context information about the current environment for the
underlying software function. To provide a realistic equivalent in simulation, AdaptiX contains
a virtual version of the commercially available Intel Realsense D435 [28]. This camera system is
commonly used in research applications [11, 66] and can deliver aligned color and depth images.
The built-in color sensor generates depth data by applying a stereo-vision algorithm using grayscale
image data of two built-in infrared (IR) imagers. To improve the texture information captured by
the IR imagers, the camera also includes an IR projector, which projects a static pattern on the
scene.
As with the simulated robotic arm, the virtual camera system is a modular actor that can be

arbitrarily placed within the simulation environment. Its mesh and texture are derived directly
from the manufacturer’s CAD �les to optimize authenticity. The virtual camera system includes all
image sensors of the original, plus an optional virtual sensor generating a segmented image of the
scene. We designed the virtual sensor parameters to be as close as possible to those of the actual
sensors. They include – but are not limited to – sensor dimensions, lens structure, focal length, and
aperture.
Because the framework can provide depth information directly from the 3D simulation, the

virtual depth camera does not need to calculate its data using stereo-vision but instead yields
perfect per-pixel depth information. If stereo-vision-generated depth data with realistic noise,
errors, and other algorithm-speci�c e�ects is needed, the virtual system also delivers the IR images
for a manual calculation.
Additionally, the simulated camera system supports the usage of the image data in-simulation

and storing the data on disk for applications such as dataset generation or logging.

4.2 Adaptive DoF Mapping Control (ADMC)
The adaptive DoF mapping is implemented in the object Axis Wizard, which provides functions to
calculate the optimal suggestion, as well as the other possible optimizations. The calculation relies
solely on the virtual objects in the simulation environment instead of object recognition or camera
data to enable development and evaluation without a physical robot setup. However, the camera
feed for object recognition can be activated by developers to read positions and orientations. In
addition to the positions and orientations of the Gripper Mover and the Current Target (which can be
an object to pick up or a target surface to place the object on, depending on the context), two other
parameters of Axis Wizard are important to ensure the correct calculations for the pick-and-place
task – Minimal Hover Distance and Hover Height.
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Disregarding the handling of edge cases, the calculation of the optimal suggestion is taken care
of in three steps: 1) calculating Translation, 2) calculating Rotation, and 3) calculating the �nger
movement variable Gripper. The Blueprints for implementation details are provided in Appendix A.

4.2.1 Calculation of the Optimal Suggestion. Minimal Hover Distance represents the distance –
projected on the XY-plane – between the Gripper Mover and the Current Target. When this distance
is smaller than the Minimal Hover Distance (see Figure 12 in the appendix), the Axis Wizard uses
a point above the Current Target for its calculations – referred to as the Target Point, instead of
the Current Target’s position to prevent the robot from getting too close to the table, allowing for
proper gripper rotation. Then, a vector from the Gripper Mover’s position towards the Target Point
is calculated, normalized, and inversely rotated by the Gripper Mover’s rotation. This calculation
returns a unit vector pointing from the Gripper Mover toward the target point in the Gripper Mover’s
reference frame. This vector is then scaled by the Vel Trans value of the Kinova Jaco 2 to get a
translation of the size of the movement performed by the Kinova Jaco 2 during one frame.

Hover Height determines the height of the aforementioned point above the Current Target. If the
XY-projected distance between theGripper Mover and the Current Target is smaller than theMinimal
Hover Distance, the Axis Wizard directly uses the Current Target’s position for its calculations
instead of the point above it.
To calculate the optimal suggestion’s Rotation, the Translation – calculated in the �rst step – is

used as input for the Make Rot from X node. This node returns a rotator representing the rotation
required to make an object point toward the direction indicated by the input vector – target point.
To mitigate an additional roll of Gripper Mover, the inverse value is added, keeping the Gripper
Mover’s orientation largely steady. Additionally, since only a small part of the rotation is performed
during one frame, the rotator is scaled down. The calculation for the Rotation, excluding edge cases,
is depicted in Figure 13 in the appendix.

4.2.2 Calculation of Gripper values. The Gripper value only depends on whether the target point
is within reach of the robotic �ngers, either with or without additional movement (i.e. if the �ngers
are almost close enough, there will be a movement towards the target point, otherwise the �ngers
will engage without moving the gripper) and whether or not an object is currently being grasped
(i.e. if an object is grasped and the gripper is close to the target point, it suggests to open the �ngers,
otherwise close them).

4.2.3 Calculation of the Adjustment Suggestion. The adjustment suggestion is calculated by rotating
the optimal suggestion’s Translation by 90° around the Y-Axis, keeping the same Rotation and setting
the Gripper value to 0. This results in a DoF mapping which moves roughly along the Gripper
Mover’s Z-Axis, or colloquially "up and down" between the �ngers if the optimal suggestion is
seen as "forward and backward". As Rotation is kept the same between the optimal and adjustment
suggestions, the resulting movement keeps the �ngers roughly facing the direction of the Current
Target.

The translation, rotation, and gripper suggestions use much simpler calculations. The translation
suggestion calculates a vector from the Gripper Mover towards the Current Target, inversely rotates
it by the Gripper Mover’s rotation to put it into the Gripper Mover’s reference frame and uses that
as the Translation value for the suggested Adaptive Axis. This vector is also what the rotation
suggestion uses to calculate a Rotator representing a rotation towards the Current Target. The
gripper suggestion checks whether an object is currently being grasped. If so, the suggestion is to
open the �ngers (Gripper = -1). Otherwise, the suggestion is to close the �ngers (Gripper = 1).

4.2.4 A�ention Guidance in Threshold. Both the Continuous and Threshold approaches share the
same core calculation for DoF mappings. However, the Threshold approach has an additional task:
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determining whether the optimal suggestion signi�cantly di�ers from the currently active DoF
mapping. This task is more related to visualization than the DoF mapping calculation itself and is
managed by the Gizmo object.
The Gizmo object contains a Realtime Threshold variable, which represents the threshold as

a value between 0 and 1. It also includes a function called Adaptive Axes Nearly Equal, which
determines whether two Adaptive Axes are nearly equal by checking if their di�erence is below the
Realtime Threshold. The threshold value is chosen to be between 0 and 1 to align with a percentage of
di�erence (see Section 3.1.3), providing a more intuitive understanding of the amount of di�erence
compared to the cosine similarity value used as the basis for the di�erence calculation.
As the Unreal Engine does not provide an arbitrarily sized vector structure, the calculations

required needed to be programmed manually rather than with built-in vector operations. Therefore,
two math expression nodes were de�ned, one calculating the dot product of two 7D vectors and
the other calculating the magnitude of a 7D vector. Using these, the cosine similarity between two
Adaptive Axes could be calculated in Unreal Blueprints (see Figure 14 in the appendix). To forego
the transformation of the cosine similarity into a percentage di�erence, the Unreal Engine’s Nearly
Equal node was used to determine whether the cosine similarity was nearly equal to 1 – meaning
the vectors align – with a threshold of 2 * Realtime Threshold. The threshold needed to be multiplied
by 2 as the range of the cosine similarity has a magnitude of 2. The result of this calculation is a
boolean value that is true if the di�erence between the Adaptive Axes is below the threshold and
false otherwise.

The resulting value is then used by the Gizmo to show the arrow corresponding to the optimal
suggestion. It is also used to notify the Game Mode – an object representing the game, keeping
track of study variables, etc. – that the threshold was broken. This triggers an event that causes
a 1kHz sound to play and a haptic e�ect to occur on the motion controller. A reset variable is
used to prevent the sound from constantly triggering. However, there appears to be a speci�c
point during movement at which it is possible for users to stop their input and the software to get
caught in a loop of �ring the event and resetting it, causing a constant sound and vibration. If users
continued their movement, the software stopped �ring the event, seizing the sound and vibration.
Unfortunately, this was only noticed during the experiment, which is why the problem persists in
the current software version. Assuming Threshold is to be used in future research, a better solution
for a single �re execution of the noti�cation needs to be developed.

5 LIMITATIONS
In HRI research, the leading factor impacting user experience is usually the chosen method of
(shared) control and the respective interfaces. Using frameworks like AdaptiX allows researchers
to tweak these variables toward high user satisfaction through methodological studies and experi-
ments.

However, like any simulation, AdaptiX only approximates reality and contains ingrained limita-
tions when working with the system and evaluating generated results.

5.1 Scenario Selection
In the initial version, AdaptiX provides only a single level, as seen in all screenshots of this
work. This scenario functions mainly as a model for simple tasks. As such, it lacks environment
interactions or varying backgrounds and is not designed for a speci�c assistive task.

This single level might need to be revised to represent the complete application range of assistive
shared control, which is why extensions are required. As such, AdaptiX ’s modular design allows
the community to generate custom levels for their speci�c research interests e�ortlessly.
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5.2 Simulation Sickness caused by Head Mounted Display
HMDs are a popular tool to create immersive virtual environments, frequently used in research and
industrial settings. However, using a HMD in HRI can create a signi�cant displacement between
the virtual object and the physical world through e�ects related to the resulting limited �eld of
view, reduced depth perception, and distorted spatial cues.

For applications within the AdaptiX framework, these issues could result in users experiencing
motion sickness, disorientation, discomfort, and potentially decreased performance when interact-
ing with the simulated robotic arm or virtual objects. Researchers must consider these artifacts when
designing experiments, especially when developing studies including qualitative questionnaires or
when comparing di�erent levels of MR continuum.

5.3 Simulation Environment
The simulation environment centers on the photogrammetry scan of an actual room that con-
tains a table with an attached virtual robotic arm. Compared to a 3D modeling of a room, the
photogrammetry does not provide a high resolution, leading to a partial blurred appearance.
AdaptiX does not provide a photo realistic virtual environment (yet). However, in our studies,

the slightly blurred appearance never seemed to have had a negative e�ect. On the contrary, it has
helped participants focus on the scene’s relevant parts (i.e. the robot and objects). Researchers and
developers are invited to create and evaluate a 3D modeled environment.

5.4 Simulated Robotic Arm
If controlled entirely in simulation, the robotic arm (as described in Section 4.1.1) does not move
identically to an actual Kinova Jaco 2 because of implementation decisions favoring physical
interactions over accurate per-joint robot actions. In most other cases, the individual joints are in
relatively realistic positions, even though they might not be identical to the underlying solution
provided by an inverse kinematic of the real robot.
Especially in the follow-me approach (see Section 3.3.1), it is possible to reach outside of the

mechanical range of the robotic arm. Due to the entirely physics-based connection, this results in
partially disconnected joints. However, this is only an issue of visualizing the robotic arm in the
simulation environment and does not a�ect the control or the TCP data recording.

Likewise, grasping simulated objects is based on a custom implementation, and grabbed objects
are �rmly attached to the end e�ector. Care must be taken for objects that are – in reality – too
heavy for the gripper, have slippery surfaces, or have mechanical dimensions that make the object
unstable when held. Theoretically, this “ideal kind of grasping” allows the virtual robot to move
any arbitrarily large and heavy object. To address this, we added the object tag Graspable that
allows developers to de�ne permitted – and by omission – unpermitted objects.

5.5 Simulated Camera System
Although the simulated camera is based on manufacturer CAD �les, comparison tests failed
to deliver completely identical data to the actual recording system. These variances stem from
environmental di�erences between simulation and reality, as light or dust/other particles in the air
will cause e�ects in the produced image. However, these e�ects can be added in post-production or
– if required – activated in the framework. By default, the respective settings are disabled as they
would primarily introduce noise that not every developer might want.

On a technical level, the images generated by the virtual system di�er slightly in terms of data
types. The virtual grayscale IR images consist of three identical color channels instead of a single
channel in reality. Also, the virtual IR and color images include an additional fourth alpha channel,
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which is not used in our framework. The generated depth data format also di�ers, as the actual
camera system generates images as 16-bit unsigned integer, and the simulation provides them as
16-bit signed �oats. The depth data generated by the framework is pixel-perfect, which ignores
various camera system e�ects that occur in reality by the calculation of depth using stereo-vision.

All these technical di�erences are addressed within the framework through data transformation
and should not noticeably a�ect the output of AdaptiX. However, researchers and developers should
be aware of these adjustments for future developments and extension.

5.6 ROS Interface
The ROS interface connects the virtual with a real robot, each with its own environmentally-
determined set of limitations. This results in some logical inconsistencies while using the interface.
The obvious velocity limitations of the real system result in delayed execution if reality is to follow
the simulation. Therefore, the maximum velocity of the virtual robotic arm is set automatically to
the physical characteristics after enabling ROS. Also, as the virtual joints are not controlled by an
inverse kinematics (IK) but instead based on physics, the interface sends only end e�ector poses to
the real robot, omitting individual joint poses. This may result in di�ering robot con�gurations,
with only the end e�ector point being aligned in some instances.

When sending pose data from the real robot to the virtual twin in simulation, most of these
restrictions do not apply. The simulated robot can move arbitrarily fast, and its con�guration aligns
automatically with the real system. The only restriction is that, by default, no further information
about the natural environment is available, resulting in a relatively empty virtual environment if
relying purely on the ROS interface.

When designing expansions, developers also must be aware that ROS and Unreal Engine di�er in
handedness. ROS is based on a right-handed coordinate system, while the Unreal Engine uses a
left-handed approach. AdaptiX internally does the necessary transformation for the robotic arm but
will not automatically calculate this for other position and orientation data, e.g., obstacles. However,
researchers can mitigate this by applying the provided coordinate transformation methods of the
robotic arm to any further object.

6 FRAMEWORK EXAMPLE ADAPTIONS
The AdaptiX framework has been successfully used and adapted in three case studies evaluating

interaction concepts and multi-modal feedback with remote and laboratory-based focus groups.
6.1 Example Adaption 1: Adaptive Control of an Assistive Robot
In an initial study [32], the AdaptiX framework was used to explore the proposed ADMC control
method with associated visual cues for various DoF mappings.
In particular, we analyzed how the novel adaptive control method – proposed by Goldau and

Frese [19] – performs in a 3D environment compared to the standard mode-switch approach with
cardinal DoF mappings. They also investigated whether changes in the visual cues’ appearance
impact the performance of the adaptive control method. Three di�erent types of control with
varying visual cues and methods of mapping DoFs were compared in a remote online study. These
included the Classic visualization, one based on Double Arrow using two arrows attached to the
gripper’s �ngers, and a visually reduced variant Single Arrow, using only one arrow through the
middle of the gripper. See Figure 10 for a graphical comparison.

Due to the ongoing COVID-19 pandemic, the study was conducted entirely in a VR environment
created by AdaptiX. Non-speci�c participants were recruited that had access to the required
hardware (an Oculus Quest VR-HMD) for an immersive experience.
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(a) Classic (b) Double Arrow (c) Single Arrow

Fig. 10. Evaluated interaction design and visualizations [32].

The participants repeatedly performed a simple pick-and-place task by controlling the virtual
Kinova Jaco 2 using one of the three control types. Comparative results established that adaptive
controls require signi�cantly fewer mode switches than the classic control methods. However, task
completion time and workload did not improve. Study participants also mentioned concerns about
the dynamically changing mapping of combined DoFs and the 2-DoF input device.
Framework contribution: AdaptiX demonstrated its e�ectiveness in this remote study to

evaluate new interaction designs and feedback techniques. The innovative advantage is that the
physical robotic device does not need to be present during these preliminary studies when testing
and evaluating essential design elements. The Record & Replay functionality of AdaptiX allowed
a remote analysis of participants data. This VR approach signi�cantly increases the potential to
include end-users in the research and design process while at the same time decreasing cost, time
involvement, and accessibility concerns.

6.2 Example Adaption 2: Communicating Adaptive Control Recommendations
A follow-up study [46] evaluated two new adaptive control methods for an assistive robotic arm,
one of which involves a multi-modal approach for attention guiding of the user.
We used AdaptiX in a laboratory study to cross-validate the initial study’s �ndings on how

participants interact with the environment. The adaptive system re-calculated the best combination
of DoFs to complete the task during movement. These calculations were presented to the user
as alternative control options for the current task. Users cycled through these suggestions – by
pressing a button on the input device – to make a suitable selection or continue moving with the
previous active DoFs (see Figure 11).

They contrasted the variants Continuous and Threshold, di�ering in the time at which suggestions
are communicated to the user, against a non-adaptive Classic control method. Possible e�ects on task
completion time, the number of necessary mode switches, perceived workload, and user opinions on
each control method were compared. Further, we establish that Continuous and Threshold performed
equally well in quantitative and qualitative insights. Consequently, both are promising approaches
to communicating proposed directional cues e�ectively.

Framework contribution: The integrated multi-modal feedback is an integral feature of Adap-
tiX, capable of supporting the system’s real-time suggestions by user attention guiding. Although
some participants experienced the combined visual-auditory-haptic multi-modal feedback as “irritat-
ing” [46], it e�ectively communicated updated suggestions. One application of virtual frameworks
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like AdaptiX might be the di�erentiation between di�erent modality types and corresponding
user preferences in an easy-to-set-up study. Highlighting the advantage of our framework, we
could evaluate our di�erent visualizations and multi-modal feedback without implementing a VR
environment [46].
Based on the successful implementation of AdaptiX in this laboratory study, we are con�dent

that the framework performs well in remote and in-person studies.

(a) (b) (c)

Fig. 11. Suggested control alternatives in light blue, visualized as in case study 2: (a) Moving forward and
downward towards the object, (b) Closing the fingers to grasp the object, and (c) Moving towards the target
area.

6.3 Example Adaption 3: Comparing Input Devices for Controlling a Physical Robot in
Mixed Reality

A third study [47] highlights the MR capability of the framework and the integration options with
di�erent input devices. This study used the Varjo XR-3 XR-HMD to explore a similar interaction
design and feedback technique to our Threshold approach [46]. By incorporating this XR-HMD,
the prototype mimics an AR environment (see Section 3.2) to the user, seeing the physical setup
augmented by visual cues. Instead of a virtual pick-and-place task as before, this study combined a
physical object, a physical drop area, and a physical robotic arm with AR cues delivered via the
headset.
Participants compared three assistive input techniques: 1) a head-based control by using the

de�ection of the head on the pitch axis for continuous input and on the roll axis for mode-switching,
2) a gamepad input by using the Xbox Adaptive Controller [40] extended with Logitech Adaptive
Gaming Kit [35] buttons for a discrete input, and 3) the control-stick of a Nintendo Joy-Con [43]
motion controller – as a baseline to our previous study [46].

Framework contribution: With its real-world setting augmented by virtual cues, the research
moved closer to reality on the MR-continuum than the previous two case studies. AdaptiX suc-
cessfully performed as an easy-to-use interface between the usage of a physical robot and virtual
communication via a XR-HMD.
It also allowed the research team to quickly evaluate the e�ciency of di�erent input devices

with the potential to control the robotic arm along the adaptive DoF mapping. The standardized
User Input Adapter enables researchers to easily chose between di�erent technologies – supporting
continuous, discrete, and absolute user input – and further extend it to their needs by its modular
nature.
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7 CONCLUSION
Integrating AdaptiX into HRI research can streamline the development and evaluation of new
interaction designs and feedback techniques for controlling assistive robotic arms. The framework
is advantageous in remote and in-person studies as its usage negates the need for a physical robotic
device during the initial ideation and prototyping stages, thus increasing �exibility, accessibility,
and e�ciency.
An initial shared control concept by adaptive DoF mapping is provided and implemented to

support researchers and developers to either change, extend, or exchange methods with their ideas.
In studies using a physical robot, the integration of ROS bridges the gap to reality, by enabling
a bidirectional connection between virtual and physical robotic arm. ROS allows developers and
users to choose between a DigitalTwin and PhysicalTwin approach while interacting with AdaptiX.
Using AdaptiX, researchers bene�t from the entire continuum of MR. As the simulated and real-
world environments of the robotic arm are perfectly aligned, nearly seamless switching between
controlling the real and virtual robot is possible. This functionality allows applications in pure
screen space, VR, AR, simultaneous simulation/reality, and pure reality. AdaptiX ’s 3D teach-in
interface facilitates a code-less trajectory programming of an assistive robot by hand-guiding
the simulated or real robot to the speci�c location and saving the position and orientation of
the tool center point. These waypoints are interpolated to a combined movement trajectory. The
framework’s recording/replaying system is entirely customizable. It includes options to change
details during replay, such as repositioning cameras or re-rendering background scenes. A fully
integrated recording of participants interacting with the robot is possible, which can be analyzed
afterward to evaluate the speci�c research variables.

Taken together, AdaptiX is a free and open-source tool that enables HRI researchers to test and
evaluate their shared control concepts for assistive robotic devices in a high-resolution virtual
environment. The cited case studies clearly demonstrate the bene�ts researchers and developers
can draw from using the framework. The near-endless customization options allow users to tweak
the initial version to their speci�c research needs, resulting in practically tailor-made environments.

7.1 Framework Extensions
We invite the community to extend the AdaptiX framework based on their requirements needs by
creating custom levels/scenarios and integrating new interfaces. AdaptiX can be accessed free-of-
charge at https://adaptix.robot-research.de. Refer to the README provided in the repository for a
detailed description of how to implement experiments in AdaptiX.
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A BLUEPRINTS OF ADMC IMPLEMENTATION

Fig. 12. Calculation of the translation for the Optimal Suggestion: Excerpt of Blueprint code calculating the
Translation value of the Adaptive Axis for theOptimal Suggestion. Not pictured: Edge case handling for gripping
an object.
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Fig. 13. Calculation of the Rotation for the Optimal Suggestion: Excerpt of Blueprint code calculating the
Rotation value of the Adaptive Axis for the Optimal Suggestion. Not pictured: Edge case handling.
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Fig. 14. Adaptive Axes Nearly Equal function to prepare the multi-modal a�ention guiding of the user.
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In Time and Space: Towards Usable Adaptive Control for Assistive
Robotic Arms

Max Pascher1,2 and Kirill Kronhardt1 and Felix Ferdinand Goldau3 and Udo Frese3 and Jens Gerken1

Abstract— Robotic solutions, in particular robotic arms, are
becoming more frequently deployed for close collaboration with
humans, for example in manufacturing or domestic care envi-
ronments. These robotic arms require the user to control several
Degrees-of-Freedom (DoFs) to perform tasks, primarily involv-
ing grasping and manipulating objects. Standard input devices
predominantly have two DoFs, requiring time-consuming and
cognitively demanding mode switches to select individual DoFs.
Contemporary Adaptive DoF Mapping Controls (ADMCs) have
shown to decrease the necessary number of mode switches
but were up to now not able to significantly reduce the
perceived workload. Users still bear the mental workload of
incorporating abstract mode switching into their workflow. We
address this by providing feed-forward multimodal feedback
using updated recommendations of ADMC, allowing users to
visually compare the current and the suggested mapping in
real-time. We contrast the effectiveness of two new approaches
that a) continuously recommend updated DoF combinations or
b) use discrete thresholds between current robot movements
and new recommendations. Both are compared in a Virtual
Reality (VR) in-person study against a classic control method.
Significant results for lowered task completion time, fewer mode
switches, and reduced perceived workload conclusively establish
that in combination with feedforward, ADMC methods can
indeed outperform classic mode switching. A lack of apparent
quantitative differences between Continuous and Threshold
reveals the importance of user-centered customization options.
Including these implications in the development process will im-
prove usability, which is essential for successfully implementing
robotic technologies with high user acceptance.

I. INTRODUCTION

While robotic devices have long been put behind fences for
safety reasons, advances in the development of such (semi-)
autonomous technologies have started to permeate almost all
aspects of our personal and professional lives. These include
increased close-quarter collaborations with robotic devices
– from industry assembly lines [1] to mobility aides [2].
Assistive robotic arms are a particularly useful and versatile
subset of collaborative technologies with varied applications
in different fields, e.g., [3], [4].

Yet, new challenges arise when robots are tasked with
(semi-) autonomous actions, resulting in additional stress
for end-users if not correctly addressed during the design

1Max Pascher, Kirill Kronhardt, and Jens Gerken are with the
Westphalian University of Applied Sciences, Human-Computer Inter-
action, 45897 Gelsenkirchen, Germany max.pascher@w-hs.de,
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process [5]. Pollak et al. highlight the decreased feeling of
control users experienced when using a robot’s autonomous
mode. Switching to manual mode allowed their study par-
ticipants to regain control and decrease stress significantly.
These findings are corroborated by Kim et al. whose compar-
ative study of control methods resulted in markedly higher
user satisfaction for the manual mode cohort [6].

A proposed solution from previous work [7] to these
challenge are adaptive controls – referred as Adaptive DoF
Mapping Controls (ADMCs) – which merge the advantages
of (semi-) autonomous actions with the flexibility of manual
controls. They combine multiple DoFs dynamically for a
specific scenario to assist in controlling the robot. In our
concept, a Convolutional Neural Network (CNN) interprets
a camera’s video feed of the environment and dynamically
combines the most likely DoFs for a suggested movement.
Building on this, we already showed that such ADMC com-
binations of the robot’s DoFs can lead to a significantly lower
number of mode switches compared to standard control
methods [8]. However, our study could not show that this
may also improve task completion time or reduce cognitive
load. Also, challenges concerning the understanding of DoF
mappings were raised during the study.

Based on these previous findings, the present study eval-
uates two novel ADMCs methods for an assistive robotic
arm. We compare the variants Continuous and Threshold,
differing in the time at which suggestions are communicated
to the user, against a classic control method. In detail, we
examine possible effects on task completion time, number of
necessary mode switches, perceived workload, and subjective
user experience. Our contribution is two-fold:

1) We demonstrate that both ADMC methods signifi-
cantly reduce the task completion time, the average
number of mode switches, and the perceived workload
of the user.

2) Further, we establish that for Continuous and Thresh-
old, each has specific advantages which some users
may prefer over the other, raising the need for cus-
tomizable configurations.

II. RELATED WORK

Collaborative robotic solutions have received much attention
in recent years. Previous work has generally focused on (a)
different designs of robot motion intent and most recently (b)
ADMCs for robots. The latter requires a critical yet seldom
addressed topic in how collaborative robots can effectively
communicate recommended movement directions to their
user.
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A. Robot Motion Intent

Advance knowledge of the intended robot behavior and
subsequent movements within the physical world are critical
for effective collaboration when humans and robots occupy
the same space and need to coordinate their actions [9]. In
previous work, we analyzed existing techniques of commu-
nicating robot motion intent and identified different intent
types as well as several intent properties, such as location and
information or the placement of the technology [10]. Users
generally prefer to have the robot’s future movements repre-
sented visually [11]. To convey detailed robot motion intent,
researchers often rely on Augmented Reality (AR) [12], [13],
[14], as “with the help of AR, interaction can become more
intuitive and natural to humans” [15].

Effective communication of robot motion intent is par-
ticularly relevant when using ADMCs for assistive robotic
arms, as in such a shared or traded control environment each
interaction needs to be precisely coordinated.

B. Adaptive DoF Mapping Controls

Traditionally, robot control methods include individual com-
mands for each DoF, requiring frequent mode switches for
controlling translations, rotations, and gripper functionality.
Herlant et al. called into question the suitability of these
standard control methods as task completion time markedly
increases by using user-initiated compared to time-optimal
mode switches [16].

To tackle this issue, we proposed in previous work the
concept of ADMC – a dynamic combination of multiple
DoFs, thus adjusted to specific scenarios or tasks [7]. This
streamlining decreases the need for constant mode switching,
resulting in faster and more efficient task fulfillment. In [7]
we implemented a CNN as control unit to provide these
dynamic DoF mappings and gave the user a triggering
mechanism to request an update. In a 2D simulation study
which had a 4-DoF robot control mapped to a 2-DoF input
device, we found promising results.

We then extended this approach into a 3D VR simulation,
thereby mapping a 7-DoF robot control to a 2-DoF input
device [8]. We evaluated two ADMC methods – differing in
their respective movement suggestion concept – against the
baseline control method Classic. Simulating the effect of a
CNN, our work relied on a task-specific script to provide
DoF mappings based on the relative position and orientation
between gripper and target. This removed the potentially
confounding effect of a suboptimal CNN implementation.
Results showed that the number of mode switches was sig-
nificantly reduced compared to Classic, but task completion
time was unaffected. Users reported high cognitive demand
and difficulties understanding the mapping to 2 different
input DoFs. In addition, the system felt difficult to predict
and required trial and error [8].

III. ADAPTIVE DOF MAPPING CONTROLS

Building on our previous work [8], we created a VR sim-
ulation of a Human-Robot Interaction (HRI) experimental
setup to compare different ADMC methods to a non-adaptive

baseline condition Classic. Like in previous work [8] we
applied a task-specific script to explore our ADMC methods.
We tackle previous issues by 1) visualizing not only the
current but also the forthcoming DoF mapping suggestion
(improving predictability) and 2) reducing the input to a
single DoF (reducing cognitive demand). We propose two
approaches as different trade-offs between control fidelity
and cognitive demand.

The VR simulation includes a virtual model of the Kinova
Jaco 21 – a commercially available assistive robotic arm
frequently used in HRI studies, e.g., [4], [16]. Our proposed
visual feedback mimics AR, with directional cues registered
in 3D space. This allows the user to understand different
movement directions for the actual control and the suggested
DoF combinations. To simplify understanding, we use ar-
rows, a straightforward and common visualization technique
to communicate motion intent [9], [17], [18].

As a control method for the ADMCs, we implemented a
task-specific script. This removed any potential bias that a
more generic but currently still technically limited approach
such as a CNN-based control method may introduce. Of
course, our approach only works in a controlled experimen-
tal setting. The task-specific script evaluates the gripper’s
current position, rotation, and finger position relative to a
target. The DoF mapping system then suggests five different
movement options (referred in the following to as modes) –
in order of assumed usefulness – to the user.

1) Optimal Suggestion: Combining translation, rotation,
and finger movement [opening and closing] into one
suggestion, causing the gripper to move towards the
target, pick it up, or release it on the intended surface.

2) An orthogonal suggestion based on (1) but excluding
the finger movement. Allows the users to adjust the
gripper’s position while still being correctly orientated.

3) A pure translation towards the next target, disregarding
any rotation.

4) A pure rotation towards the next target without moving
the gripper.

5) Opening or closing of the gripper’s fingers.
During movement, the ADMC system re-calculates the best
DoF combinations to fulfill the specific task, which are then
presented as new suggestions. Users cycle through these
modes – by pressing a button on the input device – to
select a suitable one or continue moving with the previous
active suggestion (see Figure 1). A suggestion indicator is
visible above the gripper when users are not moving the
robot to distinguish between the modes. Five slanted cubes
represent the possible suggestions. The cubes appear gray
if no suggestion is active and turn blue to indicate that a
new suggestion is selected. The cube corresponding to the
selected mode increases in size. In contrast to our previous
work [8] and to the dual axis system of the baseline control
method (see Figure 2), only one input axis is required to
control the robotic arm. Consequently, the cognitive demand

1Kinova Robotic arm. https://assistive.kinovarobotics.
com/product/jaco-robotic-arm, last retrieved October 16, 2024.
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on the users is reduced as they can focus on evaluating one
movement rather than two simultaneous suggestions.

(a) (b) (c)

(d) (e) (f)

Fig. 1: Suggestions as visualized in the ADMC methods,
(a) Continue previous movement, (b) Optimal Suggestion,
(c) Adjustment Suggestion, (d) Pure Translation, (e) Pure
Rotation, (f) Open / Close Fingers.

Continuous: This control method uses continuous feedback
of robot motion intent to increase oversight of updated
movement suggestions. Continuous feedback enables users
to move in a direction and constantly evaluate the updated
optimal suggestion by the ADMC system. If found fitting,
users can switch to a new suggestion and move the robot
in the updated path to fulfill the task. Here, two directional
indicators are virtually attached to the robotic arm’s gripper:
a light blue and a dark blue arrow. The former represents the
currently selected movement option (mode) mapped to the
input axis. The forward movement of the input axis moves
the gripper in the direction the arrow is pointing; engaging
it backward moves the gripper in the arrow’s reverse direc-
tion. The dark blue arrow represents the currently optimal
suggestion at a given time. Users can only move the robot
along the dark blue arrow if they switch to that suggestion
first – which causes both arrows to overlap. While this
approach increases transparency, users might be distracted
by the constantly updating suggestions, potentially leading
to more mode switches and perceived workload.
Threshold: In contrast to Continuous, Threshold uses time-
discrete and multimodal feedback to indicate optimized
movement suggestions. Again, a light blue arrow maps the
selected movement option (mode) to the input axis. New
suggestions are only shown to the users if the optimal mode
differs – by a set degree – from the current movement. We
followed Singhal et al. and used a cosine between-vector sim-
ilarity measure to calculate this threshold [19], ranging from
exact alignment [0%] to total opposite direction [100%]. In
pretests, we determined a 20% difference between the current
and optimal vector as the suggestion threshold. If exceeded,
a short vibration pulse to the input device and a 1kHz sound

inform the users of an updated suggestion. In addition, a
dark blue arrow appears which visualizes the new suggested
movement. Users can continue the active movement, switch
to the new suggestion, or cycle through the other four modes
before deciding on one. Unlike with Continuous, users can
therefore entirely focus on the movement they are currently
performing until explicitly notified and directed to a new
suggestion. We expect Threshold to reduce perceived work-
load compared to Continuous as it does not require constant
evaluation of the visual feedback. However, we expect task
completion time to increase, as Threshold systematically
interrupts the users’ workflow. Additionally, Threshold might
result in a perceived loss of control, potentially negatively
influencing usability.

IV. STUDY METHOD AND MATERIALS

To explore the effectiveness of our ADMC methods, we
conducted a supervised, controlled experiment as a VR sim-
ulation study with 24 participants. We compared our ADMC
methods to Classic, which relies on mode switching to
access and control all DoFs one after another. Approaches as
Classic are well established (e.g., when driving a car) and are
predictable and transparent for the user. Comparing ADMC
methods to Classic allows HRI researchers to disentangle
their respective advantages and disadvantages.

A. Study Design

We applied a within-participant design with control method
as an independent variable with three conditions: (1) Clas-
sic, (2) Continuous, and (3) Threshold. Every participant
performed eight training trials and 24 measured trials per
condition, resulting in 72 measured and 24 training trials
per participant and 1,728 measured trials in total. To counter
learning and fatigue effects, the order of conditions was fully
counter-balanced. We measured the following dependent
variables:

1) Average Task Completion Time For each trial, we
measured the time in seconds needed to pick an object
and place it on the target surface.

2) Average Number of Mode Switches For each trial,
we recorded every mode switch conducted by pressing
a button on the input device.

3) Perceived Workload After completing each condi-
tion, we measured cognitive workload with the NASA
Raw-Task Load Index (NASA Raw-TLX) question-
naire [20].

4) Subjective Assessment After completing each condi-
tion, we measured the five dimensions of the Question-
naire for the Evaluation of Physical Assistive Devices
(QUEAD) [21]. After completing all trials, participants
were further asked to rank the three conditions.

After each condition, participants were prompted with sev-
eral open questions regarding their experience, their under-
standing of the control methods and the directional cues, plus
any issue of interest they considered noteworthy. Addition-
ally, participants were asked how they proceeded in situations
when they could not solve the task at first.
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Video and audio recordings of the interviews with the entire
study cohort were assessed independently by two researchers.
Open coding was applied to gather participants’ opinions of
the different control methods. We used Miro2 – an online
whiteboard [22] – to complete an affinity diagram of the
open codes. Codes were then organized into themes (see
Section V-F).

B. Hypotheses

Overall, we expected ADMC methods to reduce not just
mode switches (as in prior work [8]) but – due to the
advances in our designs – also improve on task completion
time and workload.

H1: Continuous and Threshold lead to a lower task com-
pletion time compared to Classic. However, we expect
Continuous to perform faster compared to Threshold,
as the latter systematically interrupts the user during
interaction.

H2: Continuous and Threshold result in fewer mode
switches compared to Classic. We expect Continuous
to require more mode switches than Threshold, as
users have no clear guidance about when to switch
modes. This may cause them to oversteer or accept
new suggestions inefficiently.

H3: Continuous and Threshold cause lower perceived
workload compared to Classic. However, we expect
Continuous to cause a higher workload compared to
Threshold, as it requires constant evaluation of the
visual feedback while Threshold allows the user to
relax until further notification.

C. Apparatus

Developing and testing new concepts for a robotic arm
involves inherent challenges associated with a real robot’s
physical bulk and complexity. Quickly changing the exper-
imental setup, adding feedback components, or providing
information to the user further complicate testing regimes.
We created a 3D testbed environment for HRI studies in VR
to address these challenges. This testbed contains a simulated
robotic arm (a virtual model of the Kinova Jaco 2) with
multiple control mechanisms and a standardized pick-and-
place task. Visual feedback mimics AR, with directional cues
registered in 3D space. A Meta Quest motion controller is
used as an input device to control the robotic arm.

Photogrammetry scans of an actual room were used to
design the VR environment, which was created using the
Unreal Engine 4.27 and optimized for usage with a Meta
Quest VR Head-Mounted Display (HMD) (see Figure 2).
During the study, user behavior was recorded with appropri-
ate software on a Schenker XMG Key 17 laptop with Windows
10 64-bit and Oculus Link connected to the VR headset.

For our implementation of the baseline control method
Classic, users cycled through four distinct modes to access
all seven robot DoFs, as they are mapped on a two-DoF

2Miro. https://miro.com, last retrieved October 16, 2024.

joystick, such as the control-stick on a Meta Quest motion
controller:

1) X-Translation + Y-Translation
2) Z-Translation + Roll
3) Yaw + Pitch
4) Open/Close fingers

We illustrate the current mapping between the robot’s DoFs
and the input device through two arrows attached to the grip-
per. Light blue arrows indicate the robot’s DoF assigned to
the first, dark blue arrows to the second input axis. Looking
at the joystick in VR, the same color-coded visualization is
applied.

Users press a button on the input device – the A-Button of
the Meta Quest motion controller – to switch between modes,
cycling back to the first one at the end. Four blue spheres –
in contrast to the slanted cubes used in our ADMC methods
– above the robotic arm’s gripper indicate the total number
of available and the currently active mode when users are not
moving the robot. The sphere representing the active mode
is bigger and brighter than the spheres of inactive modes.

Fig. 2: Virtual environment consisting of (left to right): a
virtual canvas, the motion controllers, a table with the blue
object and red target, and a Kinova JACO with an arrow-
based visualization

D. Participants

A total of 24 participants took part in our study (7 female,
17 male). The participants were aged 19 to 37, with a mean
age of 26 years (SD = 4.85 years). No one declared any
motor impairments that might influence reaction times. Five
participants had prior experience with controlling a robotic
arm. Participants were recruited from a university campus
and an online appointment form.

E. Procedure

Utilizing the benefits of a standardized and portable VR
simulation environment, the study was conducted in multiple
comparable physical localities. Before commencing, partici-
pants were fully informed about the project objective and the
various tasks they had to complete. Every participant gave
their full and informed consent to partake in the study, have
video and audio recordings taken, and have all the relevant
data documented.
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A study administrator observed the experiment on a laptop
and briefed participants on using the hardware as well as the
general functionalities of the study environment. Once set up,
users followed command prompts embedded in the virtual
simulation environment. For each of the three conditions,
the following steps were performed:

1) Participants were given a written and standardized
explanation of the control method used in the current
condition.

2) Participants conducted eight training trials for famil-
iarization with the respective control method.

3) Participants then conducted 24 measured trials.
4) Interview and questionnaires.

After completing all conditions, participants ranked the three
control methods from most to least preferred and explained
the reasoning behind their decision. The study concluded
with a de-briefing. The average session lasted for 90 minutes
and participants were compensated with 30 EUR.

F. Experimental Task

The experimental task is based on our previous work and
resembles a common pick-and-place scenario [8]. A blue
object appears on a table in front of the participant, which
signals the start of a trial. The user has to control the robot
from its starting position to pick the object and place it on
a red target surface, also located on the table. To change
the DoF mapping – for trial fulfillment – users could switch
modes. Upon completion, the blue object disappears, and the
robot automatically returns to the original starting position.
A new blue object appears when this position is reached,
and a new trial commences. For each trial, the position of
the blue object is placed in one of eight possible locations
spaced evenly around the red target surface. Each position
occurred once during training and thrice during measured
trials. However, the order of appearance was randomized.
We used a neutral block shape rather than specific objects to
avoid bias and ensure trial comparability.

V. RESULTS

The study comprises 1,728 (24 participants × 3 control
methods × 24 trials) measured trials. Training trials were
excluded from the analysis.

We explored the distribution of the data through QQ-plots
and either applied parametric Repeated Measures Analysis
of Variance (RM-ANOVA) or non-parametric Friedman tests.
For the latter, post-hoc pairwise comparisons using Wilcoxon
signed-rank test with Bonferroni correction followed the
omnibus test. Relevant effect sizes were calculated with r:
>0.1 small, >0.3 medium, and >0.5 large effect.

A. Task Completion Time

Mean task completion time calculated per participant and
control method (see Fig. 3) resulted in Threshold = 16.54s
(SD = 4.09s); Continuous = 16.61s (SD = 4.77s); and
Classic = 30.96s (SD = 4.89s). Outliers [N = 3] with
average times ≥ 2.2 ∗ IQR of the mean task completion
time in at least one control method were excluded [23]. The

QQ-plot of the remaining 21 participants followed a normal
distribution.

Fig. 3: Raincloud Plots for Average Task Completion Time
and Mode Switches

A RM-ANOVA found a significant main effect (F(2, 36)
= 130.92, p ≤0.001). A post-hoc pairwise comparison (Bon-
ferroni corrected) showed a significant difference between
Continuous and Classic (p ≤0.001) as well as between
Threshold and Classic (p ≤0.001). No significant difference
was found between Continuous and Threshold (p ≥0.999).

B. Mode Switches
We used a non-parametric Friedman test, as our data was not
normally distributed, to determine differences between the
average number of necessary mode switches between control
methods. Two outliers – based on ≥ 2.2 ∗ IQR of the mean
value – were excluded prior to further analysis. This resulted
in mean numbers of mode switches for Threshold = 9.28
(SD = 1.26); Continuous = 9.93 (SD = 1.47); and Clas-
sic = 19.55 (SD = 2.93) for N = 22. We found a significant
main effect (χ2(2) = 33.82, p ≤0.001, N = 22). Post-
hoc pairwise comparisons showed a significant difference
between Continuous and Classic (Z = −4.11, p ≤0.001,
r = 0.62) as well as Threshold and Classic (Z = −4.11,
p ≤0.001, r = 0.62). Again, we found no significant dif-
ference between the two ADMC methods (Z = −1.51,
p = 0.131, r = 0.28) (see Fig. 3).
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C. Perceived Workload

NASA Raw-TLX [20] scores [scale from 1 to 100] for
all participants resulted in mean task load values of
Threshold = 22.67 (SD = 13.86); Continuous = 23.23
(SD = 13.26); and Classic = 34.24 (SD = 14.65). We
applied a Friedman test which revealed a significant main
effect for perceived task load: (χ2(2) = 9.87, p = 0.007,
N = 24). Post-hoc pairwise comparisons show significant
differences between Continuous and Classic (Z = −3.03,
p = 0.002, r = 0.44), Threshold and Classic (Z = −2.76,
p = 0.006, r = 0.40), but not between Continuous and
Threshold (Z = −0.21, p = 0.830, r = 0.03).

D. Evaluation of Physical Assistive Devices

The QUEAD encompasses five individual scales (3 to 9
items each, 7-point Likert). Friedman tests for individual
dimensions revealed significant main effects for Perceived
Usefulness (PU), Perceived Ease of Use (PEU), Emotions
(E), and Comfort (C), but not for Attitude (A). Post-hoc pair-
wise comparisons indicate significant differences between
Continuous and Classic for PU, PEU, and C as well as
between Threshold and Classic for PU and PEU (refer to
Table I for detailed scores).

TABLE I: Statistics for individual QUEAD dimensions:
Perceived Usefulness (PU), Perceived Ease of Use (PEU),
Emotions (E), Attitude (A), and Comfort (C).

PU PEU E A C

Descriptive Statistics

MClassic 4.98 4.87 5.00 4.81 5.65
SDClassic 1.39 1.20 1.71 1.75 1.71

MContinuous 5.68 5.80 5.90 5.42 6.44
SDContinuous 1.05 1.04 1.25 1.48 0.78

MThreshold 5.77 5.90 5.68 5.44 6.13
SDThreshold 1.02 0.97 1.43 1.58 1.14

Friedman Tests

χ2(2) 7.49 15.22 7.20 1.76 6.39
p 0.022 ≤0.001 0.026 0.422 0.040
N 24 24 24 24 24

Pairwise Comparisons

Classic vs. Continuous

|Z| 2.32 2.47 1.85 — 2.29
p 0.021 0.014 0.064 — 0.022
r 0.33 0.36 0.27 — 0.33

Classic vs. Threshold

|Z| 2.68 2.90 1.28 — 1.23
p 0.007 0.003 0.202 — 0.220
r 0.39 0.43 0.18 — 0.18

Continuous vs. Threshold

|Z| 0.62 0.38 1.03 — 1.70
p 0.538 0.706 0.302 — 0.089
r 0.09 0.05 0.15 — 0.25

E. Individual Ranking

Participants ranked the control methods in order of prefer-
ence from 1 = favorite to 3 = least favorite. Mean values in

ascending order are Continuous = 1.67; Threshold = 2.04;
and Classic = 2.29. A Friedman test revealed no significant
main effect (χ2(2) = 4.75, p = 0.100, N = 24).

F. Qualitative Insights

Overall, the open coding process led to the identification of
five main themes, as discussed below.

1) Familiarization: While all three control methods in-
cluded a training phase, comments suggest that in particular
the ADMC methods required familiarization. Here, partici-
pants felt the controls were sometimes “inverted” (P3) and
wanted to “move the stick in the direction the arrow was
pointing at” (P6). They also reported that “it takes a while
to get used to” (P24), but “routine set in fast” (P18).

2) Handling Adaptive DoF Mapping Suggestions: The
study cohort showed a relatively uniform response to the two
ADMC methods with clear distinctions between Threshold
and Continuous. In Threshold, many participants “trusted the
system” (P23) and switched to the new suggestion as soon
as they perceived the multimodal indicator. They “did not
have to think a lot” (P4) and “relied on what the suggestion
says” (P7). This dependence on the system caused some to
“draw a blank when something went wrong because [they]
forgot they had other options” (P8). One participant even
tried using the Threshold control method with eyes closed,
which “worked surprisingly well” (P7).

In contrast, participants evaluated the suggestions in Con-
tinuous more thoroughly, as they had to decide when to
switch without the help of threshold-based indicators. Some
participants waited for suggestions with relatively simple
direction cues, such as “straight arrows” (P6, P16) as an
indication to switch modes, while others trusted their “gut
feeling” (P23). Uncertainties of “How do I approach this?”
(P23) were more frequent in this control method than
Threshold. Participants dealt with problems in both ADMC
conditions in one of two ways to find alternative suggestions
that better align with their needs. They cycled through
the further offered suggestions for an alternative option or
reversed their current movement direction until a different
suggestion was offered.

3) Visualization: Overall, participants understood the dif-
ferent visualizations. Yet, difficulties arose in all three con-
ditions relating to depth perception and understanding if the
gripper is positioned correctly to pick or place the object.
Some participants suggested a “laser pointer” (P16) to indi-
cate the gripper’s position above the table for improved depth
perception. This is a known problem for robot teleoperation.
In the past, researchers have suggested and explored AR
Visual Cues to counter that, which include similar approaches
as the ones mentioned by our participants [24], [25].

Interestingly, some participants “manipulated” the second
mode of Classic (X- and Y-Translation) to mimic this effect,
as that mode shows straight up- and downward pointing
arrows as directional cues along the y-axis.

4) Multimodal Feedback: As described above, most par-
ticipants used Threshold as intended, switching to the next
suggestion when they received the multimodal feedback.
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However, some participants experienced the haptic and audio
indicators as “irritating” (P20) or “weird and horrible” (P17).
The poignant statement “If I had to do this for five more
minutes, it would be too annoying.” (P7) reveals some
participants’ strong reactions to this control method. As a
possible mitigation, one participant suggested implementing
multiple thresholds of varying intensity instead of a singular
one that “instantly beeps loudly at me and says ’Do this
now!’” (P24).

5) Control vs. Comfort: Participants reported substantial
differences in the level of control and comfort between
Classic, Continuous, and Threshold. By nature, Classic of-
fers the highest control level but requires participants to
decide individually on every task step. In contrast, Threshold
allowed participants to perform tasks “entirely brainlessly”
(P16) and only press “forward, then A, then forward, then
A” (P17). Many participants expressed that they “felt too
directed by [Threshold]” (P8), attesting Continuous a higher
level of comfort or “freedom to experiment” (P24). Overall,
participants described Continuous as a reasonable compro-
mise or “the golden middle” (P14) between the comfortable
execution in Threshold and the high level of control in
Classic.

VI. DISCUSSION

Adaptive DoF mapping controls have already been indicated
to have benefits over classic methods [7], [8]. Yet, research
is still limited, and analysis of time-based dimensions of
directional cues is lacking. In this paper, we examined
to what extent the two ADMC methods, Continuous and
Threshold, differ from the Classic baseline – and each other
– in terms of task completion time, necessary mode switches,
perceived workload, and subjective assessment.

Significant results for all four metrics partially support our
initial hypotheses. Most strikingly, ADMC methods reduced
task completion time (H1) and mode switches (H2) by 50%
respectively compared to Classic. As previously suggested
by Kim et al., this establishes that ADMC methods lead to
faster and less involved execution of pick-and-place tasks [6].
These findings are in line with previous work [7], underlining
the benefits of ADMCs compared to Classic controls.

In contrast to previous results [8], our novel ADMC meth-
ods were able to significantly lower task completion time and
perceived workload compared to the Classic method. The
latter finding also partially supports H3. This highlights that
ADMCs which communicate the suggested recommendation
to the user – irrespective of timing – were able to increase
usability. Notably, the decreased workload of ADMCs is
particularly meaningful as the end goal should be the smooth
integration of robotic devices into people’s lives and work-
flows, not to add stress.

Turning to the second part of our analysis – contrasting
different time-based communication of feed-forward recom-
mendations – we found no significant differences in the
four metrics between Continuous and Threshold. The lack of
measurable differences between Continuous and Threshold
implies that both discrete and continuous communication of

movement suggestions allows users to use ADMC methods
efficiently. Insights gained by the results of the QUEAD
and our qualitative interviews corroborate these findings,
while the latter also helped to provide a more distinguished
analysis.

Overall, participants expressed a positive stance regarding
the ADMC methods. However, individual preferences vary
greatly between Continuous and Threshold. While some
participants preferred the higher level of control Continuous
allowed, others favored the comfortable execution possible
with Threshold. Consequently, future development of ADMC
methods should – in accordance with Burkolter et al. – in-
clude individualization options to increase comfort and end-
user acceptance [26]. Customizations would be particularly
beneficial for Threshold-based controls as participants re-
peatedly criticized the multimodal feedback. Allowing users
to adjust the modalities, the signal intensity, and even the
threshold itself may improve usability while still offering
the advantages of ADMC.

In contrast to expectations derived from our initial hy-
potheses, qualitative insights revealed that the Classic con-
trol method could still be a valuable addition in specific
situations. Participants felt an apparent lack of control when
the ADMC suggestions did not match their expectations. To
improve usability, ADMC methods could incorporate static
suggestions for certain situations. A potential way to address
this could be combining ADMC and static suggestions using
only the most common input-DoFs.

However, further experimental studies are needed to dis-
entangle exactly which factors shape personal preferences
and how customizations or crossover methods can deliver
the best results.

A. Limitations
We explored the proposed ADMC methods in a VR simu-
lation environment. While the usage of virtual simulations
in industrial settings has been successfully established [27],
[28], [29], future work should confirm if our promising
findings can be replicated in the real world with a physical
robot.

VII. CONCLUSIONS

Our ADMC methods Continuous and Threshold are promis-
ing approaches to communicate proposed directional cues
effectively. We extend our previous work [8] by demon-
strating that ADMCs significantly reduce task completion
time (1), the average number of necessary mode switches
(2), and the perceived workload of the user (3). Further,
we establish that Continuous and Threshold perform equally
well in quantitative measures while qualitative insights reveal
individual preferences.

The observations of this study provide valuable implica-
tions for any HRI researcher involved in designing novel
ADMC methods for human-robot collaborative settings. Fu-
ture work should focus on disentangling quantitative and
qualitative feedback of focus groups to develop optimal robot
motion control methods, thus increasing usability, safety and
– ultimately – end-user acceptance.
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Abstract

The joint project An Adaptive Multi-Component Robot System for Nursing Care (AdaMeKoR) was
dedicated to the development and research of robotic solutions to support nursing care practice from
2020 to 2023. In an interdisciplinary collaboration of technical, occupational science, nursing science and
nursing practice perspectives, two robotic prototypes and conceptual designs to support care recipients
and professional caregivers were developed and reflected. In addition to technical development, the
empirical research of demonstrable relief potentials, profitable user interfaces as well as requirements and
challenges for institutionally and socially successful implementation processes and ethical and nursing
science legitimacy were the central areas of interest. The aim of this article is to provide a concise overview
of the project work. Specifically, (1) empirical results of concrete evaluation studies and (2) overarching
conclusions for the research and implementation of robotic systems for care will be presented. After a
brief description of the areas of interest, an overview of the empirical research of the project is presented.
Selected exemplary studies are then described individually in terms of their methodological approach.
Subsequently, key results from the different scientific perspectives are presented. The results are then
discussed against the background of the current discourse. Lastly, conclusions for overarching insights are
outlined and the past three and a half years of the project are reflected.
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Die Perspektive potenzieller Nutzer*innen auf assistive Roboterarme
in ambulanten Settings
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Assistive Roboterarme wie der JACO von Kinova inc. sollen Menschen mit Funktionsverlusten im
Oberkörper bei täglichen Aktivitäten unterstützen und ihre Autonomie fördern (Brose et al. 2010). Dafür
wird der JACO an einem E-Rollstuhl angebracht und über dessen Steuerung bedient (Baumeister et
al. 2021). Allerdings ist die Ausübung alltäglicher Aktivitäten mit dem Roboterarm aufgrund einer
zeitraubenden Steuerung mit Schwierigkeiten verbunden (Beaudoin et al. 2019; Herlant et al. 2017).
In dem interdisziplinären BMBF Forschungsprojekt DoF-Adaptiv (Fördernr. 16SV8564) soll mit Hilfe
von Künstlicher Intelligenz ein einfacheres Steuerungskonzept für den JACO entwickelt werden. Eine
leichtere Steuerung könnte auch bei älteren Nutzer*innen die Akzeptanz von assistiven Roboterarmen
erhöhen. Die Frankfurt UAS untersucht mit einem partizipativen methodischen Ansatz orientiert an
der Aktionsforschungsspirale nach Riel (2020), ethische, rechtliche und soziale Implikationen (ELSI). In
einem ersten Schritt wurden mit potenziellen Nutzer*innen, ihren pflegenden Angehörigen, Assistenz- und
Pflegekräften in Workshops und Interviews Aktivitäten identifiziert, die im Alltag dieser Personengruppen
von Bedeutung sind und mögliche Anwendungsszenarien für den JACO entwickelt. Neben den vier
Szenarien

”
Essen und Trinken“,

”
Türen öffnen und schließen“,

”
Supermarktregal/Objekte greifen“ und

”
Mikrowelle“ konnten aus der Analyse der Workshops und Interviews auch nutzer*innenorientierte
Anforderungen an assistive Roboterarme und deren Steuerung abgeleitet werden.
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Fig. 1. Impressions of a trade fair-based user evaluation

User-centered evaluations are a core requirement in the development of new
user related technologies. However, it is often di�cult to recruit su�cient
participants, especially if the target population is small, particularly busy,
or in some way restricted in their mobility. We bypassed these problems
by conducting studies on trade fairs that were speci�cally designed for our
target population (potentially care-receiving individuals in wheelchairs) and
therefore provided our users with external incentive to attend our study. This
paper presents our gathered experiences, including methodological speci�-
cations and lessons learned, and is aimed to guide other researchers with
conducting similar studies. In addition, we also discuss chances generated
by this unconventional study environment as well as its limitations.
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1 INTRODUCTION: WHY RUN USER EVALUATIONS ON
A TRADE FAIR?

In 2023, the World Health Organization (WHO) constituted 15% of
all people around the world to live with disabilities [39]. In Germany
alone, 7.8 million people were identi�ed as severely disabled by the
end of 2021, with over half su�ering from physical impairments,
signi�cantly impacting their mobility and leading to social and pro-
fessional exclusion [31]. For many of these, who require consistent
individual care-giving, assistive technologies can become an impor-
tant tool to increase independence [19]. These range from basic aids
to advanced robotics, o�ering independence and reducing caregiver
dependency; thereby improving well-being and allowing individuals
with disabilities to participate more fully in life. Furthermore, the
aging population and their preference for aging in place amplify the
demand for novel solutions [21].
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The development of advanced assistive devices, such as robotic
arms capable of performing daily tasks, presents a new frontier in
support for those with motor impairments [5, 24]. However, chal-
lenges in the user’s control and associated stress with autonomy
need careful management. In these care-centered environments,
�exibility and user-friendly controls are essential, as the technical
pro�ciency of users varies widely and the complexity of such sys-
tems often poses barriers to e�ective use, especially for those with
disabilities [33]. Current research in shared control and Arti�cial
Intelligence (AI) aims to improve the usability and accessibility,
emphasizing the importance of an intuitive operation and tailored
user interfaces. This focus on enhancing human-robot interaction
underscores the broader challenges in this �eld’s research and devel-
opment, including ethical and logistical hurdles, safety, recruitment,
and the diverse needs of users.
Emphasizing user collaboration, research highlights the impor-

tance of involving users as active participants in the design process,
leveraging their unique insights into individual needs and experi-
ences [9, 22, 38]. This collaborative and interdisciplinary approach,
supported by organizations like the WHO, underscores the value
of viewing users as partners in the development and application of
assistive technologies. Such involvement not only enhances func-
tionality and accessibility, but also supports mental well-being and
autonomy.

This is particularly relevant for those dependent on assistance for
daily activities. The “Design for All” philosophy [32], integrating
human-centered design with accessibility, advocates for incorpo-
rating user insights in the design process from the outset. Based
on ethnographic studies and direct engagement with our target
audience, our research builds on this foundation, identifying spe-
ci�c needs and challenges to inform the development of assistive
technologies that address physical, social, and collaborative aspects
for a more inclusive, empowering solution.
While this can, for some applications, be executed isolated in

a controlled lab environment, most applications require interac-
tions with users at some point during development; Some �elds
(e.g. Human-Computer Interaction (HCI), Human-Robot Interac-
tion (HRI)) even have these at the very core of their research. How-
ever, sampling su�cient study participants to make reasonable
claims is often di�cult and not always a trivial task. This holds
especially true for the �eld of assistive robotics, where the target
population is limited in size and its members are often tightly sched-
uled and potentially vulnerable; be it physically, mentally, socially,
or simply by introducing them to research-generated technologies
that might help them, the production timelines of which are however
too long to have any immediate use.
Nevertheless, as the �eld has high potential of improving the

lives of people with technology, a lot of interesting and promising
research is conducted and evaluated. Yet one can discuss the gen-
eralizability of various studies, as either only small shares of the
study participants actually belong to the target population, or the
total cohort of users is very small.
For example, Herlant et al. analyzed assistive robot control and

compared the classic manual mode switching approach to one that
is automatic and time-optimal. Their study shows interesting results,
especially regarding the challenges associated with mode switches.

However only their initial interviews were conducted with users
from the target population (Ċ = 3), whereas the rest of the evalua-
tion was performed with able-bodied subjects [14]. Similarly, Jain
et al. present an approach of assistive control using a body-machine
interface and shared control. They tested it with 6 users, only one
of which was a potential receiver of the technology [15]. Positive
examples exist too, but often require specialized cooperation be-
tween partners: For example, Gopinath et al. proposed an assistive
optimization framework with humans in-the-loop and conducted
a pilot study with 17 subjects, 4 of which had spinal cord injuries.
However, this group is located at the Shirley Ryan AbilityLab1 and
therefore pro�ts from an established partnership with a rehabilita-
tion hospital.

1.1 Contribution
In this work, we present an alternative approach, which utilizes the
attracting e�ect of care-related trade fairs: By conducting studies
in a booth of the fair, we were able to reach a considerably higher
number of potential users when compared to a classical lab study
and thus gain valuable insights for our research. As these studies re-
quired strategies speci�cally tailored to this environment, we aim to
share our expertise with the community. In our case speci�cally, the
studies focused on evaluating (shared) manual control of assistive
robot arms for wheelchair users with limited upper limb mobility.

We therefore present our experiences regarding:
• opportunities, chances and advantages of trade fair-based

studies,
• the special and/or unconventional requirements and prepa-

rations necessary to conduct such a study, and
• the limitations that arose in this unconventional environ-

ment.

2 RELATED WORK: PARTICIPATORY EVALUATIONS OF
ASSISTIVE TECHNOLOGIES

Assistive technologies are increasingly recognized to be valuable
tools in domestic care settings as they o�er individuals with physical
impairments the opportunity to regain a measure of independence
by supplementing or reducing the need for ongoing human assis-
tance [25]. Despite these bene�ts, the adoption and use of these
technologies face challenges, including cases of non-acceptance and
abandonment. Research by Klein [16] andMerkel and Kucharski [22]
underscores the necessity of aligning these devices more closely
with the speci�c needs and preferences of their intended users. Heed-
ing this sentiment, Vines et al. [35] suggest involving potential users
early in the development process to enhance device acceptance and
utility.

In the social sciences, such participatory approaches of research
are common ever since Kurt Lewin developed the action research
method and gained increased importance in health care research
with the WHO “Health for All Strategy”. Here, the assigned goal
is an active participation of those a�ected in the research process,
thereby collaboratively gaining knowledge, re�ecting, in�uencing,
and thus changing the research process [3, 36].
1Shirley Ryan AbilityLab (formerly Rehabilitation Institute of Chicago) https://www.
sralab.org/ last visited August 20, 2024
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This synergy is also known in more technical �elds, where they
found the active participation of potential users in the design pro-
cess of assistive technologies to be crucial but challenging [6, 17, 23]:
Dalko et al. highlight the signi�cant di�culties in patient involve-
ment, particularly among those with long-term illnesses, due to
hierarchical barriers in care-institutions and a lack of established
patient groups. Nonetheless, this involvement is key to developing
devices that meet the speci�c needs of users and facilitate better out-
comes in terms of usability and acceptance [6]. Towards the end of
the 1990s, action research was introduced to Information System re-
search (IS) research, among others, by Baskerville andWood-Harper
and found its way into today’s HCI research. Baskerville and Wood-
Harper [2] and Hayes [13] both note that the participatory and
collaborative approach of action research �ts to methods and issues
previously used by researchers in IS and HCI but extends their setup
with an ethical framework.

In these technical �elds, laboratory studies are very common and
provide standardized and methodically controlled approaches, as
well as being simpler and more economical by avoiding di�culties
that could arise in the �eld. However, data generated in laboratories
misses everyday conditions and consequently leads to discussions
of data validity [3, 8]. In addition, these in-lab studies often face
logistical challenges, especially when involving participants with
mobility impairments. The di�culties in transporting individuals to
and from study locations can signi�cantly impact the feasibility and
cost of research, suggesting a need for more accessible and inclusive
research methodologies [20, 29, 30].

Field research on the other hand, refers to processes that are ob-
served in real life’s everyday settings, thus avoiding various issues
inside laboratories. Downsides of �eld research however lie in the
variation of conditions, the randomization of the perturbing condi-
tions and therefore the method, as well as multiple (uncontrollable)
e�ects that might limit internal validation of such studies [18]. Here,
action research provides tools to methodically gain valid knowledge
whilst collaborating with the target group [13].

One variation could be conducting studies within the homes
of participants, as this allows for a more realistic understanding
of how assistive technologies function in everyday settings while
keeping the environment semi-controlled. However, these studies
typically involve smaller sample sizes due to logistical and �nancial
constraints, potentially limiting the generalizability of �ndings [1,
7].

Still, research conducted in real-world settings (in-the-wild stud-
ies) provides valuable insights into how assistive technologies are
used in daily life. These studies can highlight issues of device accep-
tance and long-term use that may not be apparent in more controlled
research settings [12, 17, 23].
In summary, the design and development of assistive technolo-

gies bene�t signi�cantly from involving the target user group at
every stage, from ideation to �nal product testing. Identifying this
requirement ensures that the resulting devices are not only techni-
cally sound but also tailored to the real-world needs and preferences
of their users. Addressing the challenges associated with in-lab,
in-home, and in-the-wild studies is essential for advancing our un-
derstanding of assistive technology use and improving outcomes
for individuals with disabilities.

3 METHODOLOGY OF OUR EXAMPLE USER
EVALUATIONS

A very important element of any user-centric evaluation is subject
recruitment, the success of which depends primarily on one’s lo-
cation: It can be very struggling to sample a su�cient number of
people from the target population if the study is location bound and
the subjects are expected to travel to the research lab. As an alterna-
tive, we searched for places with a considerably higher-than-usual
distribution of care-receiving individuals, �nally landing on trade
fairs for care and rehabilitation. Participants from previous studies
suggested to look at these, as they are �xed annual events within
the community.
Here, healthcare providers and (self-advocated) societies gather

to exchange experience and inform the public, among other top-
ics, about provided services, relevant regulations, and available
federal social-care bene�ts. In addition, they also include a large
marketplace for manufacturers to showcase their (new) designs and
technologies to the target audience. This creates large incentives
for those involved in care, as they can personally observe and expe-
rience a large number of products which might have the potential
to improve their lives. The condensed experience is especially at-
tractive for people who �nd traveling to be particularly strenuous,
be it due to disabilities or other means.
Ultimately we decided on the REHAB trade fair2 in Karlsruhe

(Germany) and the REHACARE trade fair3 in Düsseldorf (Germany),
both internationally well known trade fairs for rehabilitation and
care. Consequently, they are also known to be visited by many
people with a disability who not only use it to inform themselves
about new aids, but also to meet up and network with their peers.

For us, this meant extremely high numbers of potential (primary
and secondary) users, which do not need to explicitly travel only to
join our studies, but were basically already on-location. For people
who were previously associated with our projects (e.g. due to the
participatory design), we were able to o�er discounts on the entry.
These conditions allow for a way tighter de�nition of the study sub-
jects, simply because of the associated shift in the local distribution:
Instead of rough estimates of potentially care-receiving individuals,
substantial sample sizes can be reached with tighter and more �tting
inclusion criteria, e.g. acquiring only wheelchair users with limited
mobility in their upper extremities.
However, this special environment also greatly in�uences the

objectives that can reasonably be evaluated: We have to assume
our participants to be less focused, both due to more external in-
terference, as well as individual agendas as trade fair guests. The
latter also strictly limits the available time per user. As a result, it
is reasonable to focus on qualitative objectives, relying more on
interviews and personal user remarks, rather than interpreting too
much into individual trials. For us, this meant selecting objectives
that focus on user feedback, acceptance and preferences.

3.1 Experimental Design
As the main reason to select this type of study is a shortage of suit-
able participants, the most valuable resource whilst conducting the

2REHAB trade fair. https://www.rehab-karlsruhe.com, last retrieved August 20, 2024
3REHACARE trade fair. https://www.rehacare.de, last retrieved August 20, 2024.
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study is the users’ time and willingness to contribute. We therefore
aimed to optimize their experience as far as possible, by isolating
temporal bottlenecks and widening them by conducting the study
partially in parallel using multiple researchers: One person recruits
the next user and give introductory information, while another one
performs the robot interaction with the current user, and a third
person debriefs the previous user and runs an �nal interview.
The physical setup of our studies at trade fairs was relatively

minimalistic: a robot arm is mounted to a table in a standard booth
with su�cient room around it, such that both wheelchair users as
well as researchers can easily access the system. A simple sketch of
an exemplary booth setup is shown in Figure 2: Our main experi-
mentation area is shown on the left, with the right side representing
our project partner’s booth, which we could partially use for the
interviews. For the participants, we assured a minimal distance to
the robot as a safety measure to the semi-chaotic nature of the envi-
ronment. We purposefully avoided completely enclosing structures
on the booth to preserve the visibility of the study as an advertising
element for recruitment. Finally, cameras and microphones were set
up around the experimentation area to allow a subsequent analysis
of user feedback and remarks in addition to notes taken by hand.

Fig. 2. Sketch of exemplary booth setup

In addition to technical and logistical preparations, a su�ciently
thorough ethical evaluations was necessary. This included limiting
the trial time to not cause exhaustion for our participants, which
we attempted by structuring the trials such that the duration for
every participant would not be longer than 60 minutes all together.
Another topic of ethical review was privacy and data security

during the collection of personal data in such a semi-public space.
As previously mentioned, completely enclosing the booth for this
did not seem a realistically implementable scenario, as it would
result in higher costs (e.g. building materials, extra booth space)
and a less attractive booth, thus making recruiting more di�cult.
Instead, we used natural obstructions (e.g. semi-transparent shelves,
striped blue in Figure 2) and planed to positioned the setup in such a
way that the participants were oriented with their back towards the
aisle and most other visitors passing by. Personal data was collected
with a questionnaire to be �lled out directly by the participants or
their companions. Ethic approvals were obtained for both studies.

4 EXAMPLE STUDIES
We executed two very distinct studies on trade fairs at very di�er-
ent stages of projects: Study A was conducted at the REHAB trade
fair with a minimalistic physical setup and served mostly for an
evaluation of the state of the art, harvesting of subjective user re-
quirements, and recruitment of primary users of assistive robotics
for the ongoing participatory research. Close to the very end of our
project, Study B was conducted at the REHACARE trade fair in Düs-
seldorf (Germany) and served more as the �nal stage of evaluation:
We used this chance and our experience from study A to assess our
solution with subjects sampled solely from the target population.

This section provides a brief overview of the studies, focusing on
their comparative user requirements, meta results and resonance.

4.1 Study A: Explorative User Tests
Having had only very limited experience of studies during a trade
fair, we cautiously designed this �rst study to be mainly explorative,
focus on qualitative user feedback, and potentially recruit people to
join us for our upcoming participatory development. In this initial
study, we aimed to compare existing options ofmanual control for an
assistive robot arm by gathering feedback from people associated
with care. This included care recipients, as well as informal and
professional caregivers. We intentionally set these relatively loose
conditions, as wewere looking for diverse perspectives on thematter
and were uncertain of the actual user distribution at the trade fair.

In total, 26 participants joined our experiment, 10 of which were
care-receiving wheelchair users. As we conducted the study in a
booth during the 3-day REHAB trade fair and each subject stayed
with us for 30 to 45 minutes, this sample size came close to our full
capacity and exceeded our previous expectations.
The results showed a preference for a direct control mapping

combined with a minimization of mode switches, as well as a will-
ingness to be confronted with more complex input devices and train
with them. In addition, we gathered invaluable insights into require-
ments and situations of our target population; By basically sampling
from the wild, we were able to include user pro�les that might have
otherwise be forgotten, overlooked, or incorrectly excluded for our
studies (e.g. users with spastics).

All together, the participants were all very interested and reported
enthusiasm in joining our study. They shared previous experiences
with similar systems, as well as contextual anecdotes, with the pro-
fessional care-givers often providing technical expert clari�cations.

4.2 Study B: Final User Evaluation
Based on the positive resonance and high number of participants of
the previous study, we decided to also conduct the �nal evaluation
of our project-developed shared control approach at a trade fair.
In this study, we selected the larger REHACARE and de�ned the
inclusion criteria to be more speci�c: wheelchair-users with limited
mobility of their upper limbs. Impressions from the study can be
seen in Figure 1.

Compared to the previous study, this evaluation was more struc-
tured and less explorative in order to allow us a more substantiated
analysis of our shared control. While the concept was previously
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shown to be functional with able-bodied users [10, 28], the veri�ca-
tion with the target groupwas still lacking. Bridging this gapwas the
main goal of the study presented here: Can the users learn the con-
trol su�ciently quick; and do they perceive it well and accessible? By
adjusting to people’s needs, we also analyzed the generalizability of
the control to di�erent input devices. In contrast to Section 4.1, the
tasks were de�ned with measurable brief goals such that trials could
be recorded and (partially quantitatively) compared afterwards.
Due to the more complex nature of the study and including in-

terviews and preparation, participants spend roughly 60 minutes
with us. In total, we managed to gather data from 24 people of
the target population (wheelchair users with limited mobility in
their upper limbs) during the 4-day long trade fair. As the physical
capabilities of users varied vastly and were not known by us in
advance, spontaneous adjustments to the mechanical setup were
often necessary.

Nevertheless, participants were again very enthusiastic and even
glad to be included in the research process. The results showed
the capabilities of the proposed control, as well as an increase in
understanding and acceptance of the control during the trials.

5 LESSONS LEARNED
Trade fairs are messy: There is a lot of noise, it is at times very
crowded, and there are various distractions. For example, spotlights
disrupt visual interfaces, while the huge number of transmitting
technical devices interfere with wireless connections. But with the
challenges do come opportunities and unexpected results that would
not occur in more controlled setting.

Running Trials with an Audience: During both studies, seeing
the robot in action was very attractive for other guests, who stopped
to watch, often asking questions or giving comments, however
also partially generating unwanted performance pressure for study
participants. Consequently in Study B some participants remarked
on the audience or other distractions during the interviews, implying
that a calmer setting could have led to a better performance. One
participant stated “But at the trade fair, there are people, time pressure.
(. . . ) and that’s a bit more strenuous than at home.”4 Another one said:
“Oh, if you try that a few times and there’s no audience there, (. . . )
you’ll become more con�dent.” Other participants did not mind being
watched during testing, with some even asking their companions
take pictures or record them.
Acquisition of Participants: At both trade fairs, experience

showed that guests are keen to test new technologies and are gen-
erally open to new ideas. We especially found our target audience
of wheelchair users with limited mobility in their upper limbs to be
very curious and open to us, which greatly simpli�ed and acceler-
ated acquisition. Many participants expressed their joy in testing
our robot control: “I just think it’s really great that this option exists.
And it was nice to be able to test it out.” Con�rming our assumptions,
participants told us that visiting these events is a regular (mostly an-
nual) activity for them: They use it to stay on track with technology,
�nd new assistive devices and gather with their peers.

4This and all further direct quotes are translated from German.

Recruitment for the study was therefore relatively unstructured:
by basically sampling in-the-wild, we approached potential par-
ticipants and had short condense introductory talks to get them
interested in the study. As both the participants and our time on the
trade fair was limited, the pre-study brie�ng was held minimalistic,
especially when compared to recruitment talks in a lab-based study
with travel time.While this interchange was at all possible due to the
reduction of hurdles and consequently quick launches into participa-
tion, unexpected di�culties also arose due to diverse and previously
unknown user situations. This included spastics whichmade holding
controllers di�cult, head rests or vision impairments that prevented
the use of smart glasses, breathing aids or speech impediments that
restricted communication, and neurological impairments. For most
users, we were able to �nd spontaneous workarounds (e.g. reposi-
tioning and propping up controllers to lessen spastics, or setting
up an external screen for vision impairments), but some trials had
be aborted. In addition to blocking valuable time, this often left
participants and researchers unsatis�ed.
Speci�c to the trade fairs, we observed that appointments for

trials tended not to work. The agenda of the guests changed too
rapidly, as to allow them to return to our booth at a prede�ned time.
In addition, it has to be considered that people participating in the
afternoon after several hours at the trade fair tended to be more
exhausted.

Interviewing on a Trade Fair: The interviews of study B were
conducted without an extra booth or �xed place. They mainly took
place in a corner of our partner’s booth and in some cases even
at the edge of the aisle next to our booth. Not interviewing in our
booth had the advantage that the next person could start their trial
while the previous one was still in their closing interview. For the
researcher, it was inconvenient to constantly search for a place to
conduct the interview, however, it provided the participants with
a moment to clear their mind before the questions started. Further
challenges that arose due to the conditions of the fair included the
noise level, crowded space, as well as trials or demonstrations of
our project partners in clear view. This led to a lot of distractions
and interruptions during the interviews and made it hard for both
parties to stay focused. Sometimes, caused by the background noises,
the interviewers missed parts of an answer, thus loosing the op-
portunity for follow-up questions. This noise level also a�ected
the transcription of the audio recording, resulting in 5 interviews,
where part of the answers could not be transcribed. In 6 further
interviews, it was challenging to distinguish the speaker. Although
an AI-based software was used for transcription, the transcripts
needed to be manually corrected more thoroughly than usual. To
�nd a practical solution to conduct interviews with less noise on
a trade fair is not that easy. Still, a bigger booth with a �xed place
for the interviews might have led to fewer distractions and a better
interviewing quality.

6 DISCUSSION
Typically, similar studies are conducted in laboratories of research
institutes, i.e. subjects are recruited and invited in advance and
the environment is known and completely controllable by the re-
searchers. This comes with various advantages, accumulating to
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generally more predictable procedures: (1) There are none to very
few external in�uences in a lab, resulting in less distractions and
consequently cleaner trials, (2) the participants are known and asso-
ciated possible complications can be surmised in advance, and (3) it
is possible to schedule participants, as they will arrive independently
and no study-related equipment needs to be transported.

However, this requires a pre-existing cohort of subjects to sample
from (which is non-trivial for su�ciently tight requirements) and
loads the burden of traveling to the lab onto the participants. Espe-
cially for people with physical impairments, this can be a major task,
which, among other things, involves the availability of accompany-
ing persons, options of transport, and space in one’s own timetable,
which is often enough stu�ed with therapies.

In contrast, the presented trade fair-based approach inverts the
situation. Both the environment as well as the participants are un-
known variables; however, the latter have already traveled to the
study location, such that they are not additionally burdened. This
requires, of course, an existing trade fair that speci�cally addresses
the target group.
Other imaginable alternatives are purely virtual o�-site studies

(e.g. [27]), purely ethnographic studies where researchers travel
to users’ homes without equipment (e.g. [26]), or expensive and
complicated evaluations where researchers visit users’ homes and
bring along equipment such as robots (e.g. [4]). However, each of
these variations come with extensive downsides.
Consistent throughout these alternative methodologies is the

requirement of known predetermined users. In contrast, the pre-
sented studies recruited participants on-the-�y from a cohort of
“free-roaming” trade fair guests. This resulted in a much larger di-
versity of participants, both in terms of physical capabilities, as well
as previous technical experience and acceptance, thus improving
the scienti�c signi�cance. In particular, this includes less tech-savvy
users who might be more critical towards such systems and would
therefore regularly not get involved with technical research [34, 37].

On the downside, this came with unforeseen challenges (e.g. par-
tial blindness on one eye) which required spontaneous adjustments,
not all of which could be met on-site. Still, providing a larger group
of potential future users with a chance to evaluate the technology
meant that, in the spirit of action research, as many people from
our target group were involved in our �nal evaluation as possible:
They shared their knowledge as experts in their own �eld, including
former experiences with assistive technologies, life situation and
the resulting requirements; thus supplementing their perspective
and in�uencing further research [18, 40].
In Section 3.1, we discussed the situation regarding privacy and

data security of personal data and its impact on the design of the
booth. Arriving at the trade fair (for study B) and seeing the situation
on site for the �rst time, it soon became clear that the set up could
not be implemented as planned. Instead of placing the demonstrator
in a way that participants would face the back wall of the booth,
they would now be positioned lateral and be more visible for other
passing visitors. That meant less privacy and more distractions
during the trial. However, it is quite common on such trade fairs
for visitors to try out new aids (e.g. wheelchairs or robotic eating
devices) in public and without any consideration to privacy. Doing
so, visitors of the trade fair are well aware that others stop to watch

or even take pictures. Still, whenever we noticed someone taking
pictures, we asked them to only depict the robot and ensure the
participants to not be recognizable, e.g. by taking the picture from
behind. We therefore conclude that the reduction of privacy at a
trade fair is a reasonable circumstance for the participants.

Another challenge was a secure way of collecting of personal data.
Even though some participants were able to manually �ll out the
questionnaire (sometimes with assistance from their companions),
they often requested a researcher to collaborate. This was done as
discreetly as the circumstances allowed. The trials itself took longer
than anticipated: Instead of planned 45 minutes, most participants
stayed with us for about 60 minutes. Luckily, this showed not to be
a problem at all, as all participants were happily ready to invest this
time. Some expressed excitement and joy during or after their trail.

Study Result Validity: In our investigation of inclusive and as-
sistive human-robot interaction, we conducted two distinct studies,
each o�ering unique insights into the e�ectiveness and acceptance
of our approach.
The �rst study, Study A, took place at the REHAB trade fair

in Karlsruhe, Germany. With a focus on qualitative feedback and
exploration, we engaged 26 participants over the course of three
days. Building upon the success of Study A, we proceeded to Study
B, a �nal evaluation conducted at the REHACARE trade fair in
Düsseldorf. Here, we targeted wheelchair users with limited upper
limb mobility, totaling 24 participants over four days. Adopting a
more structured methodology, including interviews and de�ned
task trials, we sought to validate the e�ectiveness and acceptance
of our shared control approach.
Together, these studies provide a robust foundation – involving

50 participants – for assessing the viability of assistive robotics
in inclusive environments. With a diverse participant pool and a
combination of qualitative and structured methodologies, we have
garnered valuable insights into user preferences, requirements, and
acceptance, paving the way for future advancements in inclusive
human-robot interaction. In general, participants demonstrated en-
thusiasm and willingness to engage with the research process, rein-
forcing the validity of our �ndings.

7 CONCLUSION
We presented an in-depth analysis of the capabilities that arise from
running robotic studies at trade fairs, with a special focus on assistive
technologies designed for care-receiving individuals. For this, we
showed a generalized methodology, provided brief summaries of
the approaches and results of two di�erent studies we performed on
trade fairs, and discussed our experiences with this unconventional
study setting.
As discussed, the study conditions on a trade fair di�er vastly

from those of a typical lab-based evaluation. In short, one exchanges
a bit of predictability and general control in the lab with a way bet-
ter adjusted localized target population (i.e. easier recruitment of
appropriate subjects) and a more realistic in-the-wild environment.
As shown, the setting of a trade fair has its own, partially chaotic, dy-
namics. Therefore a thorough planing is needed, including situation-
aware preparations, but also researchers that are willing to react
spontaneously and be ready to improvise.
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This de�nitely does not expose trade fairs as the general go-to
option for user evaluations, but instead highlights them as a valid
alternative to a lab-based study. This is especially the case for studies
that are mostly qualitative and focus on a user group that is either
limited in size, has di�culties traveling to research laboratories, or
di�cult to contact in the �rst place.

While this requires a mobile study setup, custom preparations in
advance, and capabilities for spontaneous problem solving at the
trade fair itself, we can highly recommend examining this option.
For us, it provided larger numbers of more appropriate participants
and extremely valuable insights from exchanges with the real target
group. Besides, quite a lot of our participants stated, that they had
fun during the trails and enjoyed being able to join the study and
partake in our research.
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